Thermoelectric and Transport Properties of In-Filled CoSb3 Skutterudites

2010 ◽  
Vol 658 ◽  
pp. 17-20 ◽  
Author(s):  
Jae Yong Jung ◽  
Kwan Ho Park ◽  
Soon Chul Ur ◽  
Il Ho Kim

In-filled CoSb3 skutterudites (InzCo4Sb12) were prepared and the filling effects on the thermoelectric and transport properties were examined. Seebeck coefficient and Hall coefficient confirmed that all the samples showed n-type conductivity. Temperature dependence of the electrical resistivity suggested that InzCo4Sb12 is a highly degenerate semiconducting material. The thermal conductivity was considerably reduced by In filling and the lattice contribution was dominant.

2003 ◽  
Vol 793 ◽  
Author(s):  
Y. Amagai ◽  
A. Yamamoto ◽  
C. H. Lee ◽  
H. Takazawa ◽  
T. Noguchi ◽  
...  

ABSTRACTWe report transport properties of polycrystalline TMGa3(TM = Fe and Ru) compounds in the temperature range 313K<T<973K. These compounds exhibit semiconductorlike behavior with relatively high Seebeck coefficient, electrical resistivity, and Hall carrier concentrations at room temperature in the range of 1017- 1018cm−3. Seebeck coefficient measurements reveal that FeGa3isn-type material, while the Seebeck coefficient of RuGa3changes signs rapidly from large positive values to large negative values around 450K. The thermal conductivity of these compounds is estimated to be 3.5Wm−1K−1at room temperature and decreased to 2.5Wm−1K−1for FeGa3and 2.0Wm−1K−1for RuGa3at high temperature. The resulting thermoelectric figure of merit,ZT, at 945K for RuGa3reaches 0.18.


2021 ◽  
Author(s):  
Elham Sadeghi ◽  
Hamed Rezania

Abstract In this paper, the transport properties of a two-dimensional Lieb lattice that is a line-centered square lattice are investigated in the presence of magnetic field and spin-orbit coupling. Specially, we address the temperature dependence of electrical and thermal conductivities as well as Seebeck coefficient due to spin-orbit interaction. We have exploited Green’s function approach in order to study thermoelectric and transport properties of Lieb lattice in the context of Kane-Mele model Hamiltonian. The results for Seebeck coefficient show the sign of thermopower is positive in the presence of spin-orbit coupling. Also the temperature dependence of transport properties indicates that the increase of spin-orbit coupling leads to decrease thermal conductivity however the decrease of gap 1 parameter causes the reduction of thermal conductivity. There is a peak in temperature dependence of thermal conductivity for all values of magnetic fields and spin-orbit coupling strengths. Both electrical and thermal conductivities increase with increasing the temperature at low amounts of temperature due to the increasing of transition rate of charge carriers and excitation of them to the conduction bands. Also we have studied the temperature dependence of spin susceptibility of Lieb monolayer due to both spin orbit coupling and magnetic field factors in details.


2007 ◽  
Vol 124-126 ◽  
pp. 1019-1022 ◽  
Author(s):  
K.W. Jang ◽  
Il Ho Kim ◽  
Jung Il Lee ◽  
Good Sun Choi

Non-stoichiometric Zn4-xSb3 compounds with x=0~0.5 were prepared by vacuum melting at 1173K and annealing solidified ingots at 623K. Electrical resistivity and Seebeck coefficient at 450K increased from 1.8cm and 145K-1 for Zn4Sb3(x=0) to 56.2cm 350K-1 for Zn3.5Sb3(x=0.5) due to the decrease of the carrier concentration. Hall mobility and carrier concentration was 31.5cm2V-1s-1 and 1.32X1020cm-3 for Zn4Sb3 and 70cm2V-1s-1 and 2.80X1018cm-3 for Zn3.5Sb3. Electrical resistivity of Zn4-xSb3 with x=0~0.2 showed linearly increasing temperature dependence, whereas those of Zn4-xSb3 with x=0.3~0.5 above 450 K tended to decrease. Thermal conductivity of Zn4Sb3 was 8.5mWcm-1K-1 at room temperature and that of Zn4-xSb3 with x≥0.3 was around 11mWcm-1K-1. Maximum ZT of Zn4Sb3 was obtained around 1.3 at 600K. Zn4Sb3 with x=0.3~0.5 showed very small value of ZT=0.2~0.3.


2012 ◽  
Vol 1456 ◽  
Author(s):  
Mani Pokharel ◽  
Huaizhou Zhao ◽  
Kevin Lukas ◽  
Zhifeng Ren ◽  
Cyril Opeil

ABSTRACTThe Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient of FeSbx (x = 2.04, 2.00, and 1.96) nanocomposites hot pressed at 300 °C were measured. The power factor of FeSb1.96 was increased by 105% compared to FeSb2. Hall coefficient measurements revealed a decreased carrier concentration and increased mobility in FeSb1.96 with an overall enhancement in ZTof 45% in FeSb1.96 .


2013 ◽  
Vol 1517 ◽  
Author(s):  
Petar Popčević ◽  
Ante Bilušić ◽  
Kristijan Velebit ◽  
Ana Smontara

ABSTRACTTransport properties (thermal conductivity, electrical resistivity and thermopower) of decagonal quasicrystal d-AlCoNi, and approximant phases Y-AlCoNi, o-Al13Co4, m-Al13Fe4, m-Al13(Fe,Ni)4 and T-AlMnFe have been reviewed. Among all presented alloys the stacking direction (periodic for decagonal quasicrystals) is the most conductive one for the charge and heat transport, and the in/out-of-plane anisotropy is much larger than the in-plane anisotropy. There is a strong relationship between periodicity length along stacking direction and anisotropy of transport properties in both quasicrystals and their approximants suggesting a decrease of the anisotropy with increasing number of stacking layers.


2000 ◽  
Vol 626 ◽  
Author(s):  
Jun-ichi Tani ◽  
Hiroyasu Kido

ABSTRACTIn order to investigate the thermoelectric properties of Re-doped β-FeSi2 (Fe1-xRexSi2), Ir-doped β-FeSi2 (Fe1-xIrxSi2), and Pt-doped β-FeSi2 (Fe1-xPtxSi2), the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of these samples have been measured in the temperature range between 300 and 1150 K. Fe1-xRexSi2 is p-type, while Fe1-xIrxSi2 and Fe1-xPt xSi2 are n-type over the measured temperature range. The solubility limits of dopant are estimated to be 0.2at% for Fe1-xRexSi2, 0.5at% for Fe1-xIrxSi2, and 1.9at% for Fe1-xPtxSi2. A maximum ZT value of 0.14 was obtained for Fe1-xPt xSi2 (x=0.03) at the temperature 847 K.


2013 ◽  
Vol 1490 ◽  
pp. 3-8 ◽  
Author(s):  
Dimas S. Alfaruq ◽  
James Eilertsen ◽  
Philipp Thiel ◽  
Myriam H Aguirre ◽  
Eugenio Otal ◽  
...  

AbstractThe thermoelectric properties of W-substituted CaMn1-xWxO3-δ (x = 0.01, 0.03; 0.05) samples, prepared by soft chemistry, were investigated from 300 K to 1000 K and compared to Nb-substituted CaMn0.98Nb0.02O3-δ. All compositions exhibit both an increase in absolute Seebeck coefficient and electrical resistivity with temperature. Moreover, compared to the Nb-substituted sample, the thermal conductivity of the W-substituted samples was strongly reduced. This reduction is attributed to the nearly two times greater mass of tungsten. Consequently, a ZT of 0.19 was found in CaMn0.97W0.03O3-δ at 1000 K, which was larger than ZT exhibited by the 2% Nb-doped sample.


2001 ◽  
Vol 691 ◽  
Author(s):  
Donny W. Winkler ◽  
Terry M. Tritt ◽  
Robert Gagnon ◽  
J. Strom-Olsen

ABSTRACTQuasicrystals have properties associated with both crystalline and amorphous materials. These properties appear to be sensitive to both composition and annealing conditions. Therefore, it is important to investigate the influence of the microstructure on the electrical and thermal transport properties of quasicrystals. AlPdMn quasicrystal samples were prepared with various levels of Re substituted for the Mn (Al70Pd20Mn10−XReX) and then subjected to different annealing conditions. Electrical resistivity, thermopower and thermal conductivity were measured on each as grown and annealed sample over a broad range of temperature, 10 K < T < 300 K. The relationship between the electrical and thermal transport properties and microstructure will be presented and discussed.


Author(s):  
Velimir Jovanovic ◽  
Saeid Ghamaty ◽  
Norbert B. Elsner ◽  
Daniel Krommenhoek ◽  
John C. Bass

New nano-structured thermoelectric (TE) materials have been developed and fabricated that have much higher conversion efficiencies than the state-of-the-art (SOTA) bulk thermoelectrics. In these new quantum well (QW) materials, the carrier and barrier materials (in this case SiGe and Si) are confined in alternating layers less than 10 nm thick, and this confinement has been shown to result in greatly improved TE properties (Seebeck coefficient, electrical resistivity and thermal conductivity) leading to higher TE Figure of Merit, ZT, conversion efficiencies and Coefficient of Performance (COP) for cooling applications than for SOTA thermoelectrics. From the most recent QW test data, ZTs greater than 3 at room temperature have been obtained which constitutes a significant improvement over the SOTA bulk thermoelectrics which have ZTs less than 1. QW materials have the best measured TE power factor (Seebeck coefficient squared divided by electrical resistivity) and, combined with low thermal conductivity substrates, should provide very high efficiency TE modules. The QW TE materials with ZTs greater than 3 lead to conversion efficiencies greater than 20 percent, which allows for much wider commercial applications, particularly in the applications such as the waste-heat recovery from truck engines, refrigeration, and air conditioning, where the SOTA bulk TE modules were shown to be technically feasible but economically unjustified due to low conversion efficiencies. With higher efficiency QW materials, these applications become economically attractive. The above mentioned QW TE ZTs include the effect of the substrate which degrades the overall performance, and a new test technique was developed that eliminates the effect of the substrate and for just the QW films, ZTs greater than 6 have been measured. This illustrated the importance of using a low thermal conductivity substrate in order to achieve good TE performance. In a recent QW test, a conversion efficiency corresponding to 62 percent of the Carnot efficiency was measured and this is believed to be the highest such value ever measured for a TE material. For power generation applications, QW TE generators can be designed for capacities ranging from milliwatts to kilowatts and for cooling applications with capacities ranging from watts to several tons of refrigeration. The paper discusses the effects of the thermal and electrical contact resistances and of substrate thermal conductivity on the TE performance, the status of the prototype QW TE generators and coolers being designed and fabricated, and the latest test results.


Sign in / Sign up

Export Citation Format

Share Document