Mechanical Property Anisotropy of 7010 Aluminum Alloy Sheet Having Single Rotated-Brass Texture

2011 ◽  
Vol 702-703 ◽  
pp. 303-306
Author(s):  
Chandan Mondal ◽  
Ashok Kumar Singh ◽  
A.K. Mukhopadhyay ◽  
K. Chattopadhyay

Mechanical property anisotropy in terms of in-plane anisotropy (AIP) of yield strength, and work hardening behavior of a heat treated 7010 aluminum alloy sheet has been investigated. The specimens were given two different types of heat treatments that result in a unique single rotated Brass-{110}á556ñ component with different texture intensity and volume fraction of recrystallization. It has been observed that the AIPincreases with increase in texture intensity and volume fraction of recrystallization. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features namely, grain morphology and precipitation. On the other hand, work hardening behavior appears to be significantly affected by the microstructural features rather than type of texture present in the samples.

Author(s):  
Daisaku Yanaga ◽  
Toshihiko Kuwabara ◽  
Naoyuki Uema ◽  
Mineo Asano

Deformation behavior of 0.9-mm-thick 6016-T4 aluminum alloy sheet with a high intensity of the cube orientation under biaxial tension was investigated. First, many linear stress paths in the first quadrant of stress space were applied to cruciform specimens to precisely measure the deformation behavior of the test material up to an equivalent strain of 0.04. True stress-true plastic strain curves, contours of plastic work in stress space and the directions of plastic strain rates were measured and compared with those calculated using selected yield functions. Second, in an effort to observe the plastic deformation behavior of the sample up to much larger strains over 0.1, the sample was bent and YAG-laser welded to fabricate tubular specimens with an inner diameter of 44.6mm. Using a servo-controlled tension-internal pressure testing machine, plane strain tension tests were performed. Hydraulic bulge test was also performed. The material exhibits significant differential work hardening; the Yld2000-2d yield functions with exponents of 6, 12 and 32 had the best agreement with the experimental work contours for the equivalent plastic strains of 0.002, 0.04 and 0.14, respectively.


Sign in / Sign up

Export Citation Format

Share Document