Monte-Carlo Simulation of Goss Abnormal Grain Growth in Fe-3%Si Steel by Sub-Boundary Enhanced Solid-State Wetting

2012 ◽  
Vol 715-716 ◽  
pp. 146-151
Author(s):  
K.J. Ko ◽  
A.D. Rollett ◽  
N.M. Hwang

The selective abnormal grain growth (AGG) of Goss grains in Fe-3%Si steel was investigated using a parallel Monte-Carlo (MC) simulation based on the new concept of sub-boundary enhanced solid-state wetting. Goss grains with low angle sub-boundaries will induce solid-state wetting against matrix grains with a moderate variation in grain boundary energy. Three-dimensional MC simulations of microstructure evolution with textures and grain boundary distributions matched to experimental data is using in this study.

2004 ◽  
Vol 467-470 ◽  
pp. 745-750 ◽  
Author(s):  
Nong Moon Hwang

Although it has been generally believed that the advantage of the grain boundary mobility induces abnormal grain growth (AGG), it is suggested that the advantage of the low grain boundary energy, which favors the growth by solid-state wetting, induces AGG. Analyses based on Monte Carlo (MC) simulation show that the approach by solid-state wetting could explain AGG much better than that by grain boundary mobility. AGG by solid-state wetting is supported not only by MC simulations but also by the experimental observation of microstructure evolution near or at the growth front of abnormally growing grain. The microstructure shows island grains and solid-state wetting along grain boundary and triple junction.


2007 ◽  
Vol 539-543 ◽  
pp. 2359-2364 ◽  
Author(s):  
Fumihiro Wakai

The interparticle mass transport causes the larger particles to grow at the expense of the smaller particles in the process of sintering. Coarsening during sintering results from surface motion, while grain growth results from grain boundary motion. The three-dimensional simulation was performed to study coarsening and grain growth during sintering by using the Surface Evolver program. The coarsening and grain growth were affected by the ratio of grain boundary energy to surface energy, the ratio of grain boundary mobility to surface mobility, the size of a particle, and its coordination number.


2012 ◽  
Vol 715-716 ◽  
pp. 563-567 ◽  
Author(s):  
M. Syha ◽  
D. Weygand

The conditions for the nucleation of abnormal grain growth were investigated using a three dimensional vertex dynamics model. Potentially abnormal growing grains characterized by their size and topological class, respectively and embedded in an isotropic grain ensemble were subjected to annealing varying their grain boundary properties. The simulation results indicate that the classical mean field approaches underestimate the role of the grain boundary energy advantage, while the impact of a mobility advantage is overestimated.


2013 ◽  
Vol 753 ◽  
pp. 367-372
Author(s):  
Tae Wook Na ◽  
Chang Soo Park ◽  
Hyung Seok Shim ◽  
Byeong Joo Lee ◽  
Chan Hee Han ◽  
...  

Three-dimensional Monte Carlo simulations with real grain orientations are performed to study the role of precipitates and sub-boundaries in the abnormal grain growth. According to the simulation results, sub-boundaries in the abnormally growing grain and precipitates in the matrix grains are necessary for the abnormal grain growth. The simulation results can be best explained by the mechanism of sub-boundary enhanced solid state wetting. The simulated microstructure is very similar to that experimentally observed.


2007 ◽  
Vol 558-559 ◽  
pp. 1101-1106 ◽  
Author(s):  
Kyung Jun Ko ◽  
Pil Ryung Cha ◽  
Jong Tae Park ◽  
Jae Kwan Kim ◽  
Nong Moon Hwang

Phase-field model (PFM) in multiple orientation fields was used to simulate the grain growth in three-dimensions (3-D) for isotropic and anisotropic grain boundary energy. In the simulation, the polycrystalline microstructure was described by a set of non-conserved order parameters and each order parameter describes each orientation of grains. For isotropic grain boundary energy, the simulation showed the microstructure evolution of normal grain growth. For anisotropic grain boundary energy, however, the simulation showed that certain grains which share a high fraction of low energy grain boundaries with other grains have a high probability to grow by wetting along triple junctions and can grow abnormally with a growth advantage of solid-state wetting. The PFM simulation shows the realistic microstructural evolution of island and peninsular grains during abnormal grain growth by solid-state wetting.


Sign in / Sign up

Export Citation Format

Share Document