Nitrogen Doping to Metatitanic Acid by NH3 Heat Treatment for Achieving Visible-Light-Responsive Photocatalytic Activity

2013 ◽  
Vol 761 ◽  
pp. 35-39
Author(s):  
Se Keun Park ◽  
Jun Ho Eun ◽  
Hyun Ho Shin

Nitrogen doping can be achieved by heating TiO2-based photocatalyst powders under dopant-generating atmospheres such as NH3. In the present work, metatitanic acid (MTA) powder was used as a raw material to obtain nitrogen-doped titania using heat treatment in NH3flow. MTA is an industrially available intermediate product in sulfate process for TiO2production, which is mesoporous material with high specific surface area. The MTA powder was heat-treated in flowing NH3at 400–550°C. For comparison, commercial P25 TiO2powder was heat-treated under the same conditions. The results show that nitrogen dopant can be successfully incorporated into the MTA by heating in NH3 atmosphere. This obviously results in the enhanced visible-light photocatalytic activity, especially in MTA sample heated at 400°C. Due to the fascinating properties of MTA powder such as high specific surface area, the N-doping effect on MTA powder is much higher than the P25 TiO2powder.

RSC Advances ◽  
2016 ◽  
Vol 6 (23) ◽  
pp. 18958-18964 ◽  
Author(s):  
Qianqian Ding ◽  
Yunxia Zhang ◽  
Guozhong Wang ◽  
Hongjian Zhou ◽  
Haimin Zhang

The hollow mesoporous TiO2–Au–TiO2 nanospheres with stability, large specific surface area can enhance visible-light-induced photocatalytic activity.


Jurnal Kimia ◽  
2020 ◽  
pp. 82
Author(s):  
D. A. D. N. Dewi ◽  
I N. Simpen ◽  
I W. Suarsa

A montmorillonite clay modified with semiconductor metal can act as a photocatalyst material. Montmorillonite clays were chosen because of their natural characteristics which are easily to be modified and have high specific surface area. This research aims to modify montmorillonite clay into photocatalyst material. The montmorillonite clay was intercalated using Fe2O3 to produce Fe2O3-pillared montmorillonite clay, then doped with TiO2 to form a photocatalyst material Fe2O3-PILC / TiO2. Modifications were intended to increase the specific surface area and number of active photocatalyst sites and thus increase the ability of photodegradation. The characterization carried out included characterizing the pillar formation using X-ray Diffraction (XRD), specific surface area by the BET method (Bruneau, Emmet, and Teller), a the number of surface acid-base sites by the titration method. Photocatalyst with the best character was Fe2O3-PILC / TiO2 1: 3 with specific surface area, number of acid and base sites respectively 45,947 m2/g, 20,1736 x 1023 sites/gram and 19,0044 x 1023 sites/gram. The result of photodegradation at optimum condition with visible light at pH 3 using 400 mg photocatalyst was 99.84%.   Keywords: photocatalyst, Fe2O3, montmorillonite clay, TiO2, rhodamine B


2020 ◽  
Vol 13 (07) ◽  
pp. 2051037
Author(s):  
Ke Han ◽  
Guobao Li ◽  
Fang Li ◽  
Mingming Yao

For the sake of improving the photocatalytic performance of TiO2, we prepared the B/Ag/Fe tridoped TiO2 films on common glass and stone substrates by the sol–gel method. In this work, the optical absorption, recombination of photogenerated electrons (e−) and holes (h[Formula: see text]), crystal types, thermal stability, composition, specific surface area and photocatalytic activity of the modified TiO2 films were investigated. The results indicated that B/Ag/Fe tridoping not only enhanced the absorption of visible light by TiO2, but inhibited the recombination of electron–hole (e−/h[Formula: see text]) pairs. The tridoping also promoted the formation of anatase and prevented the transformation of anatase to rutile at high temperature. The composite TiO2 has a large specific surface area, about three times that of pure TiO2. The photocatalytic activity of the TiO2 films were evaluated by methyl green (MG) and formaldehyde degradation. In all samples, the B/Ag/Fe tridoped TiO2 film exhibited the highest degradation rate of MG under both ultraviolet and visible light irradiation. The improvement of photocatalytic performance of TiO2 films is due to the synergistic effect of the B/Ag/Fe tridoping, which enhances the absorption of visible light and prolongs the lifetime of e−/h[Formula: see text] pairs and facilitates transfer of interface charge.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 55 ◽  
Author(s):  
Xin Yan ◽  
Guotao Ning ◽  
Peng Zhao

Hexavalent chromium Cr(VI) pollution makes has a harmful impact on human health and the ecological environment. Photocatalysis reduction technology exhibits low energy consumption, high reduction efficiency and stable performance, and is playing an increasingly important role in chromium pollution control. Graphite-phase carbon nitride has been used to reduce Cr(VI) to the less harmful Cr(III) due to its visible light catalytic activity, chemical stability and low cost. However, it has a low specific surface area and fast recombination of electron–hole pairs, which severely restrict its practical application. In this work, a TiO2-modified poly(triazine imide) (PTI) square nanotube was prepared by the one-step molten salts method. The results showed the PTI had a square hollow nanotube morphology, with an about 100–1000 nm width and 60–70 nm thickness. During the formation of the PTI square tube, TiO2 nanoparticles adhere to the surface of the square tube wall by strong adsorption, and eventually form a PTI/TiO2 heterojunction. The PTI/TiO2-7 wt% heterojunction exhibited very good Cr(VI) reduction efficiency within 120 min. The enhanced photocatalytic activity was mainly attributed to the efficient separation and transport of photo-induced electron–hole pairs and the high specific surface area in the heterojunction structure.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Xiao ◽  
Wenjie Zhou ◽  
Yanhua Zhang ◽  
Liangliang Tian ◽  
Hongdong Liu ◽  
...  

A series of three-dimensional ZnxCd1-xS/reduced graphene oxide (ZnxCd1-xS/RGO) hybrid aerogels was successfully synthesized based on a one-pot hydrothermal approach, which were subsequently used as visible-light-driven photocatalysts for photoreduction of Cr(VI) in water. Over 95% of Cr(VI) was photoreduced by Zn0.5Cd0.5S/RGO aerogel material within 140 min, and such photocatalytic performance was superior to that of other ZnxCd1-xS/RGO aerogel materials (x≠0.5) and bare Zn0.5Cd0.5S. It was assumed that the enhanced photocatalytic activity of Zn0.5Cd0.5S/RGO aerogel was attributed to its high specific surface area and the preferable synergetic catalytic effect between Zn0.5Cd0.5S and RGO. Besides, Zn0.5Cd0.5S/RGO aerogel materials were robust and durable enough so that they could be reused several times with merely limited loss of photocatalytic activity. The chemical composition, phase, structure, and morphology of Zn0.5Cd0.5S/RGO aerogel material were carefully examined by a number of techniques like XRD, SEM, TEM, BET, Raman characterizations, and so on. It was found that Zn0.5Cd0.5S/RGO aerogel possessed hierarchically porous architecture with the specific surface area as high as 260.8 m2 g−1. The Zn0.5Cd0.5S component incorporated in Zn0.5Cd0.5S/RGO aerogel existed in the form of solid solution nanoparticles, which were uniformly distributed in the RGO matrix.


Sign in / Sign up

Export Citation Format

Share Document