Preparation of Silver Nanoparticles in Water-Alcohol Mediea

2014 ◽  
Vol 809-810 ◽  
pp. 78-81
Author(s):  
Xiao Ning Gao ◽  
Dong Bo Tian ◽  
Jun Long Wang ◽  
Jie Hou ◽  
Yong Jun He ◽  
...  

Stable and uniformly dispersive silver nanoparticles were prepared though reducing silver nitrate with polyvinylpyrrolidone. The effects of preparing conditions on the stability of silver nanoparticles were investigated. The results showed that the surface plasmon resonance (SPR) band of the silver nanoparticles was about 403nm. The silver nanoparticles remained stable for more than one month. Water, alkali solution and glucose could accelerate the reaction. The stability of the silver nanoparticles was increased by adding glucose.

Molekul ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. 30 ◽  
Author(s):  
Gusrizal Gusrizal ◽  
Sri Juari Santosa ◽  
Eko Sri Kunarti ◽  
Bambang Rusdiarso

Silver nanoparticles capped with m-hydroxybenzoic acid and p-hydroxybenzoic have been successfully synthesized, but the long-term stability data of these silver nanoparticles are not available. In this paper, we report the stability of these two types of silver nanoparticles for a period of 40 weeks observation based on the change of surface plasmon resonance spectra of silver nanoparticles. Silver nanoparticles were synthesized by reduction of silver nitrate with m-hydroxybenzoic acid and p-hydroxybenzoic acid without addition of capping agent. The presence of silver nanoparticles was indicated by the appearance of yellow color due to the surface plasmon resonance of silver nanoparticles. The resulted silver nanoparticles were stored at room temperature and further UV-visible spectrophotometer was used to follow the change in surface plasmon resonance spectra. The surface plasmon resonance spectra of silver nanoparticles were overlapped for the first 18 weeks, followed by little change in the position of absorption maxima (lmax), peak intensity, and width of the absorption peak until the week of 40. Silver nanoparticles capped with m-hydroxybenzoic acid and silver nanoparticles capped with p-hydroxybenzoic acid were highly stable which should make them suitable for further applications. The results show the potential of m-hydroxybenzoic acid and p-hydroxybenzoic acid to become a new reducing agent in the synthesis of highly stable silver nanoparticles. The m-hydroxybenzoic acid and p-hydroxybenzoic acid appeared to act as both reducing and capping agent.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012084
Author(s):  
Nazatul Nabila Mohamad ◽  
Ainorkhilah Mahmood ◽  
Nor Aziyah Bakhari ◽  
Marlina Mohd Mydin ◽  
Norhafiza Mohd Arshad ◽  
...  

Abstract In this work, surface plasmon resonance (SPR) was investigated over the effect of concentration of metal precursor, concentration of reducing agent, reaction time and pH on formation of silver nanoparticles (AgNPs) using biological method. In this method, Murdannia loriformis extract (MLE) was used as reducing agent and silver nitrate as metal precursor. SPR of Murdania loriformis silver nanoparticles (MLE-AgNPs) was measured through UV-vis spectrophotometer over a range of 380 – 800 nm wavelength. It was found that, as the concentration of MLE, pH and reaction time increases, the SPR peak of MLE-AgNPs at 430 - 490 nm also increases. However, for effect of concentration of metal precursor, the result showed that SPR peak of MLE-AgNPs increases when 1 to 5 mM of silver nitrate was used but decreases for 10 and 15 mM. Significant of this study is to identify the optimum conditions for synthesis of MLE-AgNPs.


Plasmonics ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. 535-539 ◽  
Author(s):  
Kazuhiro Kawaguchi ◽  
Masahiro Saito ◽  
Katsumi Takahiro ◽  
Shunya Yamamoto ◽  
Masahito Yoshikawa

Sensors ◽  
2014 ◽  
Vol 14 (10) ◽  
pp. 18701-18710 ◽  
Author(s):  
J. Ortega-Mendoza ◽  
Alfonso Padilla-Vivanco ◽  
Carina Toxqui-Quitl ◽  
Placido Zaca-Morán ◽  
David Villegas-Hernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document