Preparation of SnO2-TiO2/Zeolite Y Composites with Enhanced Photocatalytic Activity

2016 ◽  
Vol 852 ◽  
pp. 1493-1498 ◽  
Author(s):  
Jing Yang ◽  
Xiao Wen Xu

SnO2-TiO2/zeolite Y composites were prepared by the impregnation of tin chloride and tetrabutyl titanate solution with zeolite Y and subsequent calcination at 500. SnO2-TiO2 heterostructures coated on zeolite Y is ascertained by X-ray diffraction, high-resolution transmission electron microscopy and UV-vis diffuse reflectance spectra characterization. The photocatalytic studies suggested that the SnO2-TiO2/zeolite Y showed enhanced photocatalytic efficiency of photodegradation of methyl orange compared with TiO2/ zeolite Y and SnO2/zeolite Y under UV light irradiation.

2011 ◽  
Vol 374-377 ◽  
pp. 956-959
Author(s):  
Li Yun Yang ◽  
Gui Peng Feng ◽  
Yong Cai Zhang

ZnO2 nanorods were synthesized via hydrothermal treatment of 2ZnCO3•3Zn(OH)2 powder in 30 mass% H2O2 aqueous solution at 170 °C for 12 h, and characterized by means of X-ray diffraction, transmission electron microscopy and UV–vis diffuse reflectance spectra. Besides, the photocatalytic activity of the as-synthesized ZnO2 nanorods was tested for the degradation of methyl orange in distilled water under UV light irradiation.


NANO ◽  
2018 ◽  
Vol 13 (05) ◽  
pp. 1850056 ◽  
Author(s):  
Yugan He ◽  
Qi Yan ◽  
Xiaoyu Chang ◽  
Meiying Zhu ◽  
Weiwei Wang ◽  
...  

A TiO2 photocatalyst with peony-like microstructures and a large percentage of exposed {001} facets was synthesized using a facile solvethermal method. The peony-like TiO2 was obtained using HF as a capping agent, TiCl4 as the precursor and ethanol as the solvothermal agent. The parameters which influence the mophology and formation mechanism of the products including the HF concentration, the reaction time and temperature and the solvothermal solvent, were investigated. The samples were characterized using field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction and N2 adsorption and desorption analysis. As the reaction time or reaction temperature increased, the morphology TiO2 changed from hexagonally assembled microspheres to peony-like microflowers which were composed of stacks of ultrathin nanosheets. The other reaction parameters also play a crucial role in the formation of the TiO2 microstuctures. Photocatalytic experiments showed that the synthesized TiO2 outperformed Degussa P25 in the photodegradation of methelene blue under a very weak UV light irradiation (power: 8[Formula: see text]W, light intensity: 0.4[Formula: see text]mW[Formula: see text]cm[Formula: see text]).


2012 ◽  
Vol 569 ◽  
pp. 19-22
Author(s):  
Shi Yan Han ◽  
Zhi Ming Liu ◽  
Di Wang ◽  
Ming Hua Zhu ◽  
Yan Li Ma ◽  
...  

Three kinds of TiO2 materials named Ti0, Ti0.5 and Ti1.0 were prepared via hydrothermal synthesis method using Tetrabutyl titanate (TNB) as the material and different amounts of Gemini Surfactant we prepared as the template. Then the prepared TiO2 nanoparticle was characterized by Scanning electron microscope(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Taking the UV light as the light source ,the photocatalytic activity of TiO2 to rhB was studyed . The results showed that the degradation rate of Ti0, Ti0.5 ,Ti1.0 to RhB respectively was 93.6 % , 93.9 %, 99.7 % at the time of 3 hours. The catalytic activity of Ti0.5 and Ti1.0 was obviously better than Ti0, what’s more, Ti1.0 almost made RhB completely degradated at the time of 3 hours.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Mingjie Ma ◽  
Weijie Guo ◽  
Zhengpeng Yang ◽  
Shanxiu Huang ◽  
Guanyu Wang

TiO2/fine char (FC) photocatalyst was prepared via sol-gel method with tetrabutyl titanate as the precursor and FC as the carrier. The structural property of TiO2/FC photocatalyst was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the photocatalytic activity of TiO2/FC was evaluated by photocatalytic degradation of rhodamine B (RhB) aqueous solution under UV light irradiation. The results showed that TiO2was successfully coated on the surface of FC, and the TiO2/FC photocatalyst had better photocatalytic efficiency and stability for degradation of RhB under UV light illumination as compared to that of the pure TiO2and FC. The study provided a novel way for the application of FC to the photocatalytic degradation of organic wastes.


2008 ◽  
Vol 23 (12) ◽  
pp. 3309-3315 ◽  
Author(s):  
Jun Lv ◽  
Yupeng Yuan ◽  
Xianli Huang ◽  
Haifeng Shi ◽  
Hanmin Tian ◽  
...  

Li2M(WO4)2 (M = Co and Ni) were synthesized by a conventional solid-state reaction method and characterized by powder x-ray diffraction, Brunauer-Emmet-Teller (BET) measurement, ultraviolet-visible (UV-vis) diffuse reflectance spectra, Raman spectroscopy, and photocatalytic evaluation measurements. Photocatalytic water splitting results showed that Li2M(WO4)2 (M = Co and Ni) exhibited abilities for H2 evolution with Pt cocatalyst from an aqueous methanol solution and for O2 evolution from an aqueous AgNO3 solution under UV light irradiation. Theoretical calculation, absorbance analysis, and photocatalytic H2 evolution experiment revealed that the position of W 5d level shifted to the negative side with respect to the reduced potential of H+/H2. The photocatalytic H2 evolution over Li2M(WO4)2 is discussed from the view of crystal and electronic structure point.


2010 ◽  
Vol 148-149 ◽  
pp. 1204-1207
Author(s):  
Jing Hu ◽  
Ming Guo Ma ◽  
Jian Zhang Li

The Zn/Sn-composite oxide nanogranules were synthesized via a simple hydrothermal method, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the hydrothermal temperature significantly influences the morphology, microstructure, and composition of the as-prepared samples. And the nano-sized ZnO/Zn2SnO4 exhibited high photocatalytic activities on the degradation of methyl orange (MO) under ultraviolet (UV) light irradiation.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jarupat Sungpanich ◽  
Titipun Thongtem ◽  
Somchai Thongtem

The degradation of methylene blue (MB) dye by tungsten oxide (WO3) photocatalyst synthesized by the 200°C conventional-hydrothermal (C-H) and 270 W microwave-hydrothermal (M-H) methods and commercial WO3was studied under UV light irradiation for 360 min. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectrophotometry, and UV visible spectroscopy to determine phase, morphology, vibration mode, and optical property. The BET analysis revealed the specific surface area of 29.74, 37.25, and 33.56 m2/g for the C-H WO3nanoplates, M-H WO3nanoplates, and commercial WO3nanorods, respectively. In this research, the M-H WO3nanoplates have the highest photocatalytic efficiency of 90.07% within 360 min, comparing to the C-H WO3nanoplates and even commercial WO3nanorods.


2020 ◽  
Vol 75 (8) ◽  
pp. 727-732
Author(s):  
Chen Zhang ◽  
Jian-Qing Tao

AbstractA new Cu(II) metal-organic framework, [Cu(L)(OBA)·H2O]n (1) [H2OBA = 4,4′-oxybis(benzoic acid), L = 3,5-di(1H-benzimidazol-1-yl)pyridine] was hydrothermally synthesized and characterized through IR spectroscopy, elemental and thermal analysis and single-crystal X-ray diffraction. Complex 1 is a four-connected uni-nodal 2D net with a (44·62) topology which shows an emission centered at λ ∼393 nm upon excitation at λ = 245 nm. Moreover, complex 1 possesses high photocatalytic activities for the decomposition of Rhodamine B (RhB) under UV light irradiation.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Beata Zielińska ◽  
Ewa Mijowska ◽  
Ryszard J. Kalenczuk

K-Ta mixed oxides photocatalysts have been prepared by impregnation followed by calcination. The influence of the reaction temperature (450°C–900°C) on the phase formation, crystal morphology, and photocatalytic activity in hydrogen generation of the produced materials was investigated. The detailed analysis has revealed that all products exhibit high crystallinity and irregular structure. Moreover, two different crystal structures of potassium tantalates such as KTaO3and K2Ta4O11were obtained. It was also found that the sample composed of KTaO3and traces of unreacted Ta2O5(annealed at 600°C) exhibits the highest activity in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were examined by X-ray diffraction (XRD) and diffuse reflectance (DR) UV-vis and resonance Raman spectroscopic methods, respectively. Morphology and chemical composition of the produced samples were studied using a high-resolution transmission electron microscope (HR-TEM) and an energy dispersive X-ray spectrometer (EDX) as its mode.


2020 ◽  
Vol 98 (12) ◽  
pp. 755-763
Author(s):  
Hamid Reza Ghayeni ◽  
Reza Razeghi ◽  
Abolfazl Olyaei

Cadmium sulfide nanorods with a length of 69 nm have been prepared by using Cd(OAc)2.2H2O and S8 at 125 °C in the presence of triethylenetetramine as the template agent and coordination agent and characterized by using X-ray diffraction, transmission electron microscopy, FTIR, photoluminescence, and UV–vis absorption spectroscopic techniques. Photocopolymerization of glycidyl methacrylate (GMA) and sodium acrylate (SA) was carried out using CdS nanorods as a photocatalyst under UV light exposure at 400 nm in the presence of β-cyclodextrin (β-CD). To optimization of the effective parameters on the synthesis of copolymer nanocomposite, the amounts of initiator, monomers, and β-CD, duration of pre-deoxygenation, and light wavelength were evaluated. Ring opening of poly(GMA-co-SA)/CdS nanocomposite with NaN3 afforded poly(HAzPMA-co-SA)/CdS nanocomposite and subsequent mixing with RDX in DMF led to the formation of poly(HAzPMA-co-SA)/RDX/CdS nanocomposite as a polymer bonded explosive. All of the copolymer nanocomposites were characterized using various tools of instrumental analysis.


Sign in / Sign up

Export Citation Format

Share Document