Electronic Structures of Antisite Defects in Chiral (6,2) SiC Nanotubes

2016 ◽  
Vol 873 ◽  
pp. 38-42
Author(s):  
Hu Shan Ma ◽  
Hong Xia Liu ◽  
Ke Jian Li

Antisite defects are common defects in nanotube materials and have seriously impacts on their electronic properties. Based on density-functional theory calculations, the electronic structures of the antisite defective chiral (6, 2) SiCNTs are investigated. C antisite and Si antisite lead to the formation of a depression and a bump in the surface of the nanotube, respectively. In the band gap of the SiCNT with a C antisite defect, the occupied level near the top of the valence band is formed, while the unoccupied level originating from the Si antisite defect enters the conduction band of the SiCNT.

2016 ◽  
Vol 4 (29) ◽  
pp. 11498-11506 ◽  
Author(s):  
Taehun Lee ◽  
Yonghyuk Lee ◽  
Woosun Jang ◽  
Aloysius Soon

Using first-principles density-functional theory calculations, we investigate the advantage of using h-WO3 (and its surfaces) over the larger band gap γ-WO3 phase for the anode in water splitting. We demonstrate that h-WO3 is a good alternative anode material for optimal water splitting efficiencies.


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


RSC Advances ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 760-769 ◽  
Author(s):  
Shuguang Zhang ◽  
Ning Han ◽  
Xiaoyao Tan

Spin-polarized DFT calculations were used to investigate the atomic, electronic structures of LaCoO3and La1−xSrxCoO3surfaces. The thermodynamic stability of these surfaces was analyzed with phase diagrams. Influence of Sr-doping was also examined.


2018 ◽  
Vol 20 (27) ◽  
pp. 18844-18849 ◽  
Author(s):  
Hengxin Tan ◽  
Yuanchang Li ◽  
S. B. Zhang ◽  
Wenhui Duan

Optimal choice of the element-specific pseudopotential improves the band gap.


RSC Advances ◽  
2019 ◽  
Vol 9 (15) ◽  
pp. 8364-8368 ◽  
Author(s):  
Lanling Zhao ◽  
Jun Wang ◽  
Zhigang Gai ◽  
Jichao Li ◽  
Jian Liu ◽  
...  

Density functional theory calculations were conducted to investigate the electronic structures of rutile Ti16O32, Ti13Nb2InO32, and Ti13Nb2InO31 systems.


Sign in / Sign up

Export Citation Format

Share Document