Effect of а Number of Transition Metals on the Cohesive Properties of Cr-Ni-Base Alloys

2016 ◽  
Vol 879 ◽  
pp. 1998-2002 ◽  
Author(s):  
V.N. Butrim ◽  
V.I. Razumovskiy ◽  
A.G. Beresnev ◽  
A.S. Trushnikova ◽  
I.M. Razumovskii

We used the results of ab initio calculations to improve the high temperature mechanical properties of a Cr-Ni-base alloy (Cr-33Ni-2W-0,3Ti-0,3V, wt.%) (alloy I) with two-phase α - γ microstructure. It was established that γ – phase in Cr-Ni-base alloy (I) plays a key role in the processes of plastic deformation. By analogy with Ni-base superalloys the bulk and grain boundaries cohesion in γ – phase of the Cr-Ni-base alloy (I) were strengthened by adding a package of the “low alloying” elements (Zr, Hf, Nb, Ta) (alloy II) chosen in accordance with our theoretical predictions. We further investigated an influence of a sum (Ta, Nb, Hf, Zr) like the low alloying additions on the mechanical properties of Cr-Ni-base alloy (I). The results of mechanical testing revealed a significant strengthening of the alloy (II) in comparison with (I) at the temperature 1080 oC in accordance with our predictions. We also investigated the microstructure’s peculiarities of the alloys (I) and (II).

1992 ◽  
Vol 273 ◽  
Author(s):  
Stephen M. Bruemmer ◽  
Bruce W. Arey ◽  
Charles H. Henager

ABSTRACTBend strength, compression strength, and fracture toughness of niobium beryllide intermetallic compounds have been assessed at temperatures from ambient to 1200°C. Hot-isostatically-pressed (HIP) Be12Nb showed significantly improved lowand high-temperature mechanical properties over vacuum-hot-pressed (VHP) material. Strengths at 20°C were 250 MPa in bending and 2750 MPa in compression with a fracture toughness of ∼4 Mpa√m, much higher than previously measured for this compound. High-temperature (≥ 1000°C) mechanical properties were also improved with bend strengths of 250 MPa at 1200°C as compared to only 70 to 100 MPa for the VHP material. However, severe pest embrittlement was detected in the HIP material at temperatures between 650 and 1000°C.


Alloy Digest ◽  
1971 ◽  
Vol 20 (12) ◽  

Abstract UDIMET HX is a nickel-base alloy that was developed for high temperature service. It has excellent oxidation resistance and good high temperature mechanical properties. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-166. Producer or source: Special Metals Corporation.


1990 ◽  
Vol 213 ◽  
Author(s):  
R. Wagner ◽  
M. Es-Souni ◽  
D. Chen ◽  
B. Dogan ◽  
J. Seeger ◽  
...  

ABSTRACTPrevious work has shown that ternary Ti-Al-Si alloys with hypoeutectic and eutectic microstructures containing the intermetallic phases Ti3 (Al,Si) and Ti5 (Si,Al)3 have promising high temperature mechanical properties [1]. In the present investigation alloying additions of Niobium have been made to selected Ti-Al-Si alloys based on hypoeutectic compositions and the effects of Niobium on the microstructure and mechanical properties have been studied. The high temperature creep and oxidation behaviour of such alloys appears to be superior to that of currently available Ti3Al-based alloys.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
V. I. Razumovskiy ◽  
D. Scheiber ◽  
I. M. Razumovskii ◽  
V. N. Butrim ◽  
A. S. Trushnikova ◽  
...  

We use ab initio calculations to analyze the influence of 4d and 5d transition metal alloying elements on cohesive properties of the bulk and a representative grain boundary in Cr within the framework of the Rice–Thomson–Wang approach. The results obtained for Cr are combined with the analogous results for Ni to select Ta and Nb as promising alloying additions to dual-phase (α/γ) Cr-Ni-base high-temperature alloys. Ta and Nb are added to the alloying system of an existing alloy I (Cr-Ni-W-V-Ti) in an attempt to design a chemical composition of a new alloy II (Cr-Ni-W-V-Ti) + (Ta-Nb). Investigation of the microstructure of the Ta-bearing Cr-Ni-alloy reveals a Ta enrichment of large γ-areas near GBs in α-matrix that we consider as potency to increase the cohesive strength of GBs and the cohesive energy of the bulk in γ-phase. Mechanical testing of alloys I and II demonstrates that the alloy II has improved tensile strength and creep resistance at high temperatures.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1171
Author(s):  
Xiao Fang ◽  
Rui Hu ◽  
Jieren Yang ◽  
Yi Liu ◽  
Ming Wen

Ir-based superalloys are irreplaceable in some specific harsh conditions regardless of their cost and high density. In order to develop a new class of Ir-based superalloy for future ultrahigh-temperature applications, the microstructure evolution, phase relationships, and mechanical properties of Ir–Al–W–Ta alloys with γ/γ′ two-phase structure were investigated. Room- and high-temperature compressions at 1300 °C, and room-temperature nanoindentation for the Ta-containing Ir–6Al–13W alloys were conducted. The results show that the addition of Ta can significantly improve the high-temperature mechanical properties, but does not change the fracture mode of the Ir-based two-phase superalloys. The compressive strength of quaternary alloys can be attributed to the precipitation of γ′-Ir3(Al, W) phase and solid solution strengthening. The microstructure and mechanical properties of Ir–Al–W–Ta quaternary alloys exhibit promising characteristics for the development of high-temperature materials.


Sign in / Sign up

Export Citation Format

Share Document