Effect of Sr Addition on the Solidification Structure in Al-6mass%Mg-3mass%Si Alloy

2016 ◽  
Vol 879 ◽  
pp. 2383-2388
Author(s):  
Emi Yanagihara ◽  
Goshi Aoshima ◽  
Shota Komura ◽  
Seiji Saikawa ◽  
Susumu Ikeno

Al-Mg-Si system alloy have good strength and high ductility without heat treatment. However, the castability in this alloy is inferior to other aluminum alloy, in particular, hot-tearing is easy to occur during solidification. In our previous study, hot-tearing was not occurred in the case of 0.04%Sr addition to this alloy, because of the remarkable refinement of eutectic Mg2Si phase. In this study, in order to clarify the mechanism of the change of the crystallized eutectic Mg2Si morphology, the effect of Sr addition on the solidification structure in Al-6%Mg-3%Si alloy was investigated. By Sr addition to this alloy, the change of the nucleation mode from homogeneous to heterogeneous was occurred with the temperature drop at the start of eutectic reaction, and the great change of eutectic growth mode from facet to non-facet was thought to be a main reason improving of hot-tearing.

Author(s):  
P. K. Shurkin ◽  
N. A. Belov ◽  
A. F. Musin ◽  
A. A. Aksenov

The paper substantiates the composition and prospects of using high strength Al–Zn–Mg–Ca–Fe casting aluminum alloy without heat treatment based on the study on the structure, technological and mechanical properties. Alloys of the base composition Al–5.5%Zn–1.5%Mg (wt.%) jointly and separately doped with 0.5–1.0 % Ca and 0.5 % Fe were obtained as the objects of research. Standard casting alloys according to GOST 1583-93: AK12M2, AMg6lch, AM4,5Kd were the objects of comparison. A hot tensile test using a cast test bar was conducted to check the tendency to form hot cracks due to hindered contraction. It was shown that separate alloying with calcium and iron does not contribute to the improvement of crack resistance and adversely affects mechanical properties. Combined alloying with 1 % Ca and 0.5 % Fe improves the hot tearing resistance to the level of the AMg6lch alloy properties. This effect is due to calcium-containing phases of eutectic origin formed and a favorable grain structure created that is free from columnar grains. Iron in the alloy structure is bound in compact Al10CaFe2 phase particles as a result of the non-equilibrium crystallization during permanent mold casting. The formation of this phase allowed to reduce the amount of zinc in the (Al, Zn)4Ca phase and mostly retain the (Al) solid solution composition as evidenced by similar hardness values of the Al–5.5%Zn–1.5%Mg base alloy and Al–5.5%Zn–1.5%Mg–1%Ca–0.5%Fe alloy, and the superiority of the values over the hardness of alloys separately alloyed with calcium and iron. Also the cast hardness of the promising alloy more than 20 HV higher than the cast hardness of commercial cast alloys. The new alloy in the as-cast condition exhibited competitive mechanical tensile properties: UTS ~ 310 MPa, YS ~ 210 MPa, El ~ 4 %.


Alloy Digest ◽  
1964 ◽  
Vol 13 (5) ◽  

Abstract Bridgeport 54 is a copper-zinc-aluminum alloy having high corrosion and erosion resistance combined with good strength and ductility. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: Cu-141. Producer or source: Bridgeport Brass Company.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1988 ◽  
Vol 37 (9) ◽  

Abstract 850.0 ALUMINUM Alloy can be considered the general purpose light metal bearing alloy. Its good thermal conductivity keeps operating temperatures low. It has high ductility. In many applications it has been found to be superior to steel backed bearings. 852.0 ALUMINUM Alloy has higher mechanical properties making it suitable for heavier load and higher temperature applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: Al-290. Producer or source: Federated Bronze Products Inc..


2020 ◽  
Author(s):  
O. Trudonoshyn ◽  
O. Prach ◽  
P. Randelzhofer ◽  
K. Durst ◽  
С. Körner

Sign in / Sign up

Export Citation Format

Share Document