Cryogenic Sheet Metal Forming - An Overview

2018 ◽  
Vol 941 ◽  
pp. 1397-1403 ◽  
Author(s):  
Florian Grabner ◽  
Belinda Gruber ◽  
Carina Schlögl ◽  
Christian Chimani

Despite extensive efforts to improve energy efficiency in the automotive sector, the use of light-weight aluminium alloys for car bodies is impeded by formability limitations. Although it is a known phenomenon that Al alloys increase their strength and ductility at very low temperatures, it has not been attempted to exploit this effect to increase their overall formability at an industrial scale. Over the last four years, the cryogenic sheet metal forming behaviour of Al-alloys was extensively investigated to establish a process robust enough for manufacturing automotive parts at an industrial level. Initial experiments include tensile tests at temperatures down to –196 °C for characterisation of 5xxx and 6xxx series Al alloys, providing the mechanical material data for numerical design simulations of sheet metal forming processes at cryogenic temperatures. Numerical simulations will not be discussed in this publication. Furthermore, the necessary hardware for cryogenic sheet metal forming was developed and finally resulted in a semi-automated small scale industrial production site. The production of a miniaturized B-Pillar was demonstrated for 5xxx and 6xxx alloys. Due to the part’s demanding geometry, defect-free deep drawing process is possible at cryogenic temperature only. These results demonstrate that the use of Al alloys could be extended beyond their current applications in cars components. For example, the overall formability of 5xxx series alloys nearly doubles compared to room temperature. This paper shall give an overview over our work in the field of cryogenic aluminium sheet metal forming within the last couple of years.

2016 ◽  
Vol 725 ◽  
pp. 15-32
Author(s):  
Pavel Hora ◽  
Bekim Berisha ◽  
Maysam Gorji ◽  
Holger Hippke

The industrial necking prediction in sheet metal forming is still based on the Forming Limit Diagram (FLD) as initially proposed by Keeler. The FLD is commonly specified by the Nakajima tests and evaluated with the so called cross section method. Although widely used, the FLC concept has numerous serious limitations. In the paper the influences of bending on the FLC as well as postponed crack limits will be discussed. Both criteria will be combined to an extended FLC concept (X-FLC). The new concept demonstrates that the Nakajima tests are not only appropriate for the evaluation of the necking instability, but also for the detection of the real crack strains. For the evaluation of the crack strains, a new local thinning method is proposed and tested for special 6xxx Al-alloys.


Author(s):  
Е. А. Фролов ◽  
В. В. Агарков ◽  
С. И. Кравченко ◽  
С. Г. Ясько

To determine the accuracy of the readjustable punches for separating operations (perforation + punching out) of sheet-metal forming, the accuracy parameters were analyzed using the random balance method using the method of experiment planning. Analytical dependencies are obtained to determine the values of deviation of the outer and inner contour dimensions of perforated and punched out sheet parts. From the dependencies obtained, it is possible to estimate and predict the value of deviation in the dimensions of the resulting part at any time during the operation of the punch. Practical recommendations on the calculation of the actuating dimensions of the working elements (stamping punch, matrix) of readjustable punches are offered.


2013 ◽  
Author(s):  
Jörg Heingärtner ◽  
Anja Neumann ◽  
Dirk Hortig ◽  
Yasar Rencki ◽  
Pavel Hora

Sign in / Sign up

Export Citation Format

Share Document