Nonlinear Dynamic Analysis of a Reinforced Concrete Frame by the Boundary Element Method

2019 ◽  
Vol 968 ◽  
pp. 383-395
Author(s):  
Volodymyr Fomin ◽  
Mariiam Bekirova ◽  
Mykola Surianinov ◽  
Inna Fomina

Direct dynamic analysis of reinforced concrete frame buildings taking into account the nonlinear and plastic properties of materials by the finite element method is connected with the solution of a system of solving equations of very high order. This is due to the fact that it is necessary to split the beams and columns that form the structure into a large number of finite elements, since the deformation properties of concrete are different in the compressed and stretched zones, as well as in the loading and unloading zones. In this paper, we propose a method for investigating nonlinear spatial oscillations of a flat reinforced concrete frame, based on the method of boundary elements, which leads to a much smaller amount of computational work.

2019 ◽  
Vol 25 (1) ◽  
pp. 27
Author(s):  
Junaedi Utomo ◽  
Januarti Jaya Ekaputri ◽  
Antonius Antonius ◽  
Han Ay Lie

Seismic performance of reinforced concrete frame Buildings which have been designed as Special Moment Resisting Frames in accordance to three Indonesian codes (SNI 1727-2013, SNI 1726-2012 and SNI 2847-2013) can be evaluated using nonlinear dynamic analysis. Criteria related to strength such as component plastic rotation capacity, lateral displacement as well as criteria related to damage of elements in the structures were used to evaluate the seismic performance of the buildings. Assessment to the moment and curvature capacities of the cross sections of beams and columns were done using XTRACT. The global seismic performance of the structures depends on the seismic performance of components in the structures. In nonlinear model of the structures, the degrading strength of the components were modeled to take into account the gradual reduction of the contributed components to the resistance of the structures. PERFORM-3D is one of the software that can be used to generate nonlinear model of structures. Seismic performance level of structures can be obtained from the results of the nonlinear dynamic analysis using PERFORM-3D. The Seismic performance level can be utilized for: (1) detecting any weaker part in the structures, and (2) evaluating the improved design of the structures for enhancing the seismic performance of structures.


2021 ◽  
Vol 14 (9) ◽  
pp. 57-68
Author(s):  
Durga Mibang ◽  
Satyabrata Choudhury

Assessment of the seismic vulnerability of frame-shear wall buildings can be performed by non-linear dynamic analysis and it needs detailed analytical modeling, structural performance measures and various earthquake intensities. The codal based design method can hardly be used for designing buildings of pre-defined target objectives whereas the Unified performance-based design (UPBD) method can be designed for buildings of pre-defined target objectives. In the current study, the UPBD method for frame-shear wall buildings has been applied for different performance levels (PL) i.e. Immediate occupancy (IO), Life safety (LS) and Collapse prevention (CP) with 1%, 2% and 3% drift in both the directions of the buildings. The nonlinear dynamic analysis of the reinforced concrete (RC) frame-shear wall buildings is performed considering spectrum compatible ground motions (SCGM) as per EC-8 demand spectrum at 0.45g level and type B soil condition. Vulnerability assessment of the frame-shear wall buildings is conducted by generating fragility curves and the probability failure of structure is checked based on different configurations and damage limit states of the structure. Finally, the outcome of the work gives a proper idea of the nonlinear behavior of the dual system so that optimum design could be acquired for achieving higher safety aspects.


2017 ◽  
Vol 33 (1) ◽  
pp. 25-44 ◽  
Author(s):  
Henry V. Burton ◽  
Mayank Sharma

A performance-based methodology is presented to quantify the reduction in collapse safety of main shock–damaged reinforced concrete frame buildings with infills. After assessing their collapse safety in the intact state, the residual collapse capacity following main shock damage is evaluated by conducting incremental dynamic analysis to collapse using main shock–aftershock ground motion sequences. The median collapse capacity and conditional probability of collapse for the main shock–damaged building, normalized by that of the intact case are the metrics used to measure the reduction in collapse safety. Taller buildings with built-in soft and weak first stories have the highest reduction in collapse safety as a result of main shock damage. Among the engineering demand parameters recorded during the main shock analyses, story drift demands (peak transient and residual) and infill strut axial deformations have the highest correlation with the decline in collapse performance. The results of the main shock–aftershock incremental dynamic analysis to collapse are used to develop fragility functions for the limit state defined by the building being structurally unsafe to occupy.


2021 ◽  
Author(s):  
Hamze Rouhi ◽  
Majid Gholhaki

Abstract The residual capacity of a damaged structure after the main earthquake is equal to the smallest spectral acceleration of the first mode, which causes local or general failure during the aftershock. In this research, the effect of steel plate shear wall on residual capacity of the reinforced concrete frame under seismic sequence has been investigated. Based on this, four systems of 4, 8, 12, and 24 stories, which represent short, intermediate, tall, are modeled in finite element software and subject to three sets of single and real seismic sequence, taking into account the damage, the effects of mainshock earthquakes have been analyzed under aftershock earthquakes nonlinear increment dynamic analysis (IDA). The analysis showed that in the real seismic sequence, the residual capacity of a reinforced concrete frame with steel plate shear wall in short and intermediate structures on average 3.6 times and tall structures up to 4.25 times compared to the residual capacity of the reinforced concrete frame without steel plate shear wall. Also, in the real seismic sequence, the residual capacity of the structure decreased with increasing the height of short to intermediate structures and intermediate to tall structures, so that this capacity reduction decreased by an average of 70% in reinforced concrete frame with and without steel plate shear wall.


Author(s):  
T. E. Kelly

A six storey reinforced concrete frame was analysed inelastically using a 2 dimensional dynamic analysis computer program. The program utilises the step-by-step integration method for the solution of the equations of motion. Two natural and three artificial acceleration
records were used. Harmonic motions of differing frequencies and each followed by a relatively long acceleration pulse were studied using artificial records created for the purpose. A very approximate allowance for the effects of concurrent earthquake excitation in the orthogonal direction was made by reducing the available column capacities. Parameters studied were ductility requirements, deformations, and column forces.


Sign in / Sign up

Export Citation Format

Share Document