Evaluation for RC Column Confined Partially with Externally FRP Wrapping Sheet Using Nonlinear FE Analysis

2019 ◽  
Vol 972 ◽  
pp. 129-133
Author(s):  
Yasmeen Taleb Obaidat

Little research has been carried out in validating, fiber reinforced polymer (FRP) concrete strengthened column and the effective using partial wrapping. Also the effect of several parameter on strengthen column using the partial wrapping sheet of desired width and thickness around column have not been found out. To this end, a nonlinear 3D finite element model has been developed in current study for CFRP strengthened reinforced concrete column to simulate the behavior accompanied by the effect of partial wrapping with emphasis on load capacity and failure mode. The finite element simulation of CFRP strengthened RC columns is performed using commercial finite element program ABAQUS. Modelling was conducted on reinforced concrete columns with dimensions of 160 x 250 x 960 mm. The finite element model incorporates the nonlinear material behavior of concrete, bilinear stress-strain curve of steel and linear elastic behavior of CFRP material. The concrete was modeled using a plastic damage model. The performance of the FE model was studied by simulating experimental columns from the literature. The load, and strain of CFRP obtained from the FE study were compared with the corresponding experimental results. The FEM results agreed well with the experiments. In addition, to enhance our understanding of the behavior of strengthened reinforced concrete column capacity using partial wrapping the effect of changing the spacing between the CFRP sheets and number of layers were examined. The increase number of layers and decrease spacing give a higher ultimate load capacity, and delay the failure.

2018 ◽  
Vol 4 (5) ◽  
pp. 916
Author(s):  
Hamza Mahdi Salman ◽  
Mohannad Husain Al-Sherrawi

The reinforced concrete column is designed to have a nominal axial resistance. Under different conditions like errors in design, and changing the use of the building from residential to public or storage (extra live loads), the reinforced concrete column will not be able to sustain the desired applied load, and the strengthening is required. This paper presents a finite element model to simulate and investigate the behavior of adding steel jacket to a preloaded and non-damaged reinforced concrete column. Depending on the loading state of the non-strengthened reinforced concrete column and the purpose of adding the steel jacket, two possible cases have been studied. In the first case, which is suitable to investigate the reinforced concrete column with design errors, the steel jacket has been added to the unloaded reinforced concrete column; while the second case is suitable for adding steel jacket to the pre-loaded non-damaged reinforced concrete column. The finite element model was carried out using the ABAQUS/standard v. 6.13 software. The results obtained by the proposed finite element model showed fairly good agreement with the existing experimental and analytical results.


1993 ◽  
Vol 20 (5) ◽  
pp. 754-759 ◽  
Author(s):  
S. F. Ng ◽  
M. S. Cheung ◽  
J. Q. Zhao

A layered finite element model with material nonlinearity is developed to trace the nonlinear response of horizontally curved reinforced concrete box-girder bridges. Concrete is treated as an orthotropic nonlinear material and reinforcement is modeled as an elastoplastic strain-hardening material. Due to the fact that the flanges and webs of the structure are much different both in configuration and in the state of stresses, two types of facet shell elements, namely, the triangular generalized conforming element and the rectangular nonconforming element, are adopted to model them separately. A numerical example of a multi-cell box-girder bridge is given and the results are compared favourably with the experimental results previously obtained. Key words: finite element method, curved box-girder bridges, reinforced concrete, nonlinear analysis.


2020 ◽  
Vol 23 (9) ◽  
pp. 1934-1947
Author(s):  
Dapeng Chen ◽  
Li Chen ◽  
Qin Fang ◽  
Yuzhou Zheng ◽  
Teng Pan

The bending behavior of reinforced concrete beams under uniform pressure is critical for the research of the blast-resistance performance of structural components under explosive loads. In this study, a bending test of five reinforced concrete beams with the dimensions of 200 mm (width) × 200 mm (depth) × 2500 mm (length) under uniform load produced by a specific cylinder-shaped rubber bag filled with air or water was conducted to investigate their flexural performances. An air bag load was applied to three of the reinforced concrete beams, a water bag load was applied to one reinforced concrete beam, and the remainder beam was subjected to the 4-point bending load. The experimental results highlighted that the air bag and water bag loading methods can be used to effectively apply uniform loads to reinforced concrete beams. Moreover, the stiffness of the air bag was improved by 123% in accordance with the initial pressure increases from 0.15 to 0.45 MPa. In addition, a finite element model of the test loading system was established using ABAQUS/Standard software. Moreover, the critical factors of the air bag loading method were analyzed using the numerical model. The calculated results were found to be in good agreement with the test data. The established finite element model can therefore be used to accurately simulate the action performances of the uniform loading technique using rubber bags filled with air or water.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Eden Shukri Kalib ◽  
Yohannes Werkina Shewalul

The responses of flat reinforced concrete (RC) floor slabs with openings subjected to horizontal in-plane cyclic loads in addition to vertical service loads were investigated using nonlinear finite element analysis (FEA). A finite element model (FEM) was designed to perform a parametric analysis. The effects of opening sizes (7%, 14%, 25%, and 30% of the total area of the slab), opening shapes (elliptical, circular, L-shaped, T-shaped, cross, and rectangular), and location on the hysteretic behavior of the floor slab were considered. The research indicated that openings in RC floor slabs reduce the energy absorption capacity and stiffness of the floor slab. The inclusion of 30% opening on the floor slab causes a 68.5%, 47.3%, and 45.6% drop in lateral load capacity, stiffness, and lateral displacement, respectively, compared to the floor slab with no openings. The flat RC floor slab with a circular opening shape has increased efficiency. The placement of the openings is more desirable by positioning the openings at the intersection of two-column strips.


Author(s):  
Hauke Herrnring ◽  
Søren Ehlers

Abstract This paper presents a finite element model for the simulation of ice-structure interaction problems, which are dominated by crushing. The failure mode of ice depends significantly on the strain rate. At low strain rates the ice behaves ductile, whereas at high strain rates ice reacts in brittle mode. This paper focuses on the brittle mode, which is the dominating mode for ship-ice interactions. A multitude of numerical approaches for the simulation of ice can be found in the literature. Nevertheless, the literature approaches do not seem suitable for the simulation of continuous ice-structure interaction processes at low and high confinement ratios in brittle mode. Therefore, this paper seeks to simulate the ice-structure interaction with the finite element method (FEM). The objective of the here introduced Mohr-Coulomb Nodal Split (MCNS) model is to represent the essential material behavior of ice in an efficient formulation. To preserve mass and energy as much as possible, the node splitting technique is applied, instead of the frequently used element erosion technique. The intention of the presented model is not to reproduce individual cracks with high accuracy, because this is not possible with a reasonable element size, due to the large number of crack fronts forming during the ice-structure interaction process. To validate the findings of the model, the simulated maximum ice forces and contact pressures are compared with ice-extrusion and double pendulum tests. During validation, the MCNS model shows a very good agreement with these experimental values.


Sign in / Sign up

Export Citation Format

Share Document