Structure and Properties of Ni˗Al˗Ti Systems Formed by Combustion Synthesis

2020 ◽  
Vol 991 ◽  
pp. 44-50
Author(s):  
Tri Widodo Besar Riyadi

Ni-Al-Ti system is one of the intermetallic systems that attract wide interest for high-temperature application. In this work, combustion synthesis was used to produce intermetallic materials prepared by Ni/Al with varied Ti content using 3%, 10%, 20%, and 30%. The reactant mixtures were compressed in a steel die to form compacted pellets. The ignition of the combustion process was conducted using an arch flame. Sequential tests of SEM, EDS, and XRD were conducted to characterize the microstructure of the synthesized products, whereas the mechanical properties of the product were measured using a Vickers microhardness test and wear test. The result shows that the phases formed in the product were dominated by Ni-Al and Ti-Ni systems. An increase in the Ti content from 3% to 20% increases the hardness. The formation of several intermetallic phases was responsible for the harder products. An increase of Ti content decreases the wear rate. This work shows that the content of 10% Ti can be used to achieve the optimized properties of hardness and wear resistance.

2020 ◽  
Vol 991 ◽  
pp. 24-29
Author(s):  
Dhimas Wicaksono ◽  
Xiao Meng Zhu ◽  
Mohammad Sukri Mustapa ◽  
Sulis Yulianto ◽  
Ahmad Yunus Nasution ◽  
...  

In this work, a ternary system prepared by Ni-Al-Ti mixed powder was synthesized using self-propagation high-temperature synthesis (SHS) process. The weight of the reactant was varied using 3%, 10%, 20% and 30% of the Ti content. The mixtures were compressed in a steel die to form compacted pellets, and subsequently ignited using an external heat source to initiate the combustion process. The synthesized products were characterized using SEM, EDS, and XRD, whereas the mechanical property of the product was measured using a Vickers microhardness test. The identification of the formed phase indicates that Ni-Al, Ti-Al and Ti-Ni systems were formed during the reaction. An increase of Ti content from 3% to 10% improves the density of the synthesized product. Further increase of Ti content to 20% results in the generation of cracks. The addition of Ti with 30% leads to the formation of a porous product. The heat released by the SHS process due to the formation of several intermetallic phases was responsible for the formation of defect products. The highest hardness of the product was achieved in the product prepared by 20% Ti content. However, the higher Ti content than 20% results in hardness reduction. This work shows that the content of 10% of Ti produced a dense and hard product.


1997 ◽  
Author(s):  
R. Spivey ◽  
S. Breeding ◽  
J. Andrews ◽  
D. Stefanescu ◽  
S. Sen ◽  
...  

2012 ◽  
Vol 586 ◽  
pp. 69-73
Author(s):  
Chia Chen Lin ◽  
Cheng Han Lee ◽  
Ren Kae Shiue ◽  
Hsiou Jeng Shy

High-temperature brazing molybdenum using palladium and titanium foils have been investigated in the experiment. Successful brazed joints are achieved from using the palladium filler foil. Brazed joints are fully dense and free of any intermetallic phase. Three point bending strengths of 246 and 233 MPa are obtained from joints using 100 m thick palladium filler foil brazed at 1580 and 1610 oC for 600 s, respectively. The application of palladium filler foil shows potential in brazing molybdenum for high-temperature application.


2021 ◽  
pp. 118607
Author(s):  
Yanyan Zhou ◽  
Yingjuan Yan ◽  
Yanyan Li ◽  
Xiang Li ◽  
Haoyang Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document