titanium foils
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7353
Author(s):  
Chunju Wang ◽  
Weiwei Zhang ◽  
Zhenwu Ma

The increasing demand for parts with a large specific surface area such as fuel panels has put forward higher requirements for the plasticity of foils. However, the deformation characteristics of foils is hard to be illustrated in-depth due to their very short deformation process. In this paper, the digital image correlation method was applied to investigate the influence of size effect on the elongation of Ti-2.5Al-1.5Mn foils. The results showed that the elongation of Ti-2.5Al-1.5Mn foils increased with the decrease in the ratio of thickness-to-grain diameter (t/d value). Then, the macro deformation distribution of foils was analyzed, combined with their microstructure characteristics, and it was found that the increasing influence of individual grain heterogeneity leads to the earlier formation of a concentrated deformation zone, which changes the deformation mode of foils. The concentrated deformation increases with the decrease in t/d value, thus dominating the trend of the foil elongation. Furthermore, the homogeneous deformation and concentrated deformation can be divided into two different zones by a certain critical t/d value. These results provide a basis for understanding and further exploration of the deformation behavior of titanium foils.


2021 ◽  
pp. 178991
Author(s):  
Frederik Bojsen Kværndrup ◽  
Kristian V. Dahl ◽  
Dominique Poquillon ◽  
Kenny Ståhl ◽  
Marcel A.J. Somers ◽  
...  
Keyword(s):  

Vacuum ◽  
2021 ◽  
Vol 188 ◽  
pp. 110170
Author(s):  
Sunil Kumar ◽  
Sonia Rani ◽  
Piyush Sharma ◽  
Urmila Berar ◽  
S.A. Khan ◽  
...  

2021 ◽  
Vol 57 (3) ◽  
Author(s):  
Andrew S. Voyles ◽  
Amanda M. Lewis ◽  
Jonathan T. Morrell ◽  
M. Shamsuzzoha Basunia ◽  
Lee A. Bernstein ◽  
...  

AbstractTheoretical models often differ significantly from measured data in their predictions of the magnitude of nuclear reactions that produce radionuclides for medical, research, and national security applications. In this paper, we compare a priori predictions from several state-of-the-art reaction modeling packages (CoH, EMPIRE, TALYS, and ALICE) to cross sections measured using the stacked-target activation method. The experiment was performed using the Lawrence Berkeley National Laboratory 88-Inch Cyclotron with beams of 25 and 55 MeV protons on a stack of iron, copper, and titanium foils. Thirty-four excitation functions were measured from 4–55 MeV, including the first measurement of the independent cross sections for $$^{\mathrm{nat}}\hbox {Fe}$$ nat Fe (p,x)$$^{49,51}\hbox {Cr}$$ 49 , 51 Cr , $$^{51,{\mathrm{52m}},{\mathrm{52g}},56}\hbox {Mn}$$ 51 , 52 m , 52 g , 56 Mn , and $$^{{\mathrm{58m,58g}}}\hbox {Co}$$ 58 m , 58 g Co . All of the models, using default input parameters to assess their predictive capabilities, failed to reproduce the isomer-to-ground state ratio for reaction channels at compound and pre-compound energies, suggesting issues in modeling the deposition or distribution of angular momentum in these residual nuclei.


Electrochem ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 83-94
Author(s):  
Elisabetta Petrucci ◽  
Monica Orsini ◽  
Francesco Porcelli ◽  
Serena De Santis ◽  
Giovanni Sotgiu

Ruthenium oxide (RuOx) thin films were spin coated by thermal decomposition of alcoholic solutions of RuCl3 on titanium foils and subsequently annealed at 400 °C. The effect of spin coating parameters, such as spinning speed, volume, and molar concentration of the precursor as well as the number of deposits, on the morphology and electrochemical performance of the electrodes was investigated. The films were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV) with and without chloride, and linear sweep voltammetry (LSV). The prepared materials were also compared to drop cast films and spin-coated films obtained by adopting low-temperature intermediate treatments. The results indicate that even dispersion of the oxide layer was always achieved. By tuning the spin coating parameters, it was possible to obtain different electrochemical responses. The most influential parameter is the number of deposits, while the concentration of the precursor salt and the rotation speed were less relevant, under the adopted conditions.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 803
Author(s):  
Živa Marinko ◽  
Luka Suhadolnik ◽  
Zoran Samardžija ◽  
Janez Kovač ◽  
Miran Čeh

Titanium dioxide (TiO2) nanotubes obtained by the anodic oxidation of titanium metal foils can be used for the photocatalytic degradation of organic pollutants. The aim of our study was to determine the influence of the titanium foil’s surface treatment on the final morphology of the TiO2 nanotubes and their photocatalytic activity. In our experiments, we used two different titanium foils that were electropolished or untreated prior to the anodic oxidation. The morphologies of the starting titanium foils and the resulting TiO2 nanotube layers were investigated and the photocatalytic activities measured by the decomposition of caffeine under UV irradiation. Our results showed that electropolishing of the starting foils produced a more uniform and smoother TiO2 nanotubes surface. In contrast, the TiO2 nanotube surfaces from untreated titanium foils mimic the initial surface roughness of the titanium foil. A comparison of the photocatalytic properties of the TiO2 nanotube layers obtained from the untreated and electropolished titanium foils showed that electropolishing does not necessarily improve the photocatalytic properties of the resulting TiO2 nanotube layer. It was found that the determining factors influencing the photocatalytic activity are the chemical impurities (Ti-nitride) on the surface of the titanium foils and the surface roughness of the TiO2 nanotube layer. The highest photocatalytic activity was achieved with the anodized untreated foil with the minimal presence of Ti-nitride and a relatively high roughness of the TiO2 nanotubes.


Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 19 ◽  
Author(s):  
Tihana Čižmar ◽  
Ivana Panžić ◽  
Krešimir Salamon ◽  
Ivana Grčić ◽  
Lucija Radetić ◽  
...  

Cu-modified immobilized nanoporous TiO2 photocatalysts, prepared by electrochemical anodization of titanium foils, were obtained via four different synthesis methods: hydrothermal synthesis, anodization with Cu source, electrodeposition, and spin-coating, using two different copper sources, Cu(NO3)2 and Cu(acac)2. The objective of this research was to investigate how copper modifications can improve the photocatalytic activity of immobilized nanoporous TiO2 under the UV/solar light irradiation. The best photocatalytic performances were obtained for Cu-modifications using spin-coating. Therefore, the effect of irradiated catalyst surface areas on the adsorption of model pollutants, methylene blue (MB) and 1H-benzotriazole (BT), was examined for samples with Cu-modification by the spin-coating technique. The mechanisms responsible for increased degradation of MB and BT at high Cu concentrations (0.25 M and 0.5 M) and decreased degradation at low Cu loadings (0.0625 M and 0.125 M) were explained. 1H-benzotriazole was used to study the photocatalytic activity of the given samples because it is highly toxic and present in most water systems. The characterization of the synthesized Cu-modified photocatalysts in terms of phase composition, crystal structure, and morphology were investigated using X-ray Diffraction, Raman Spectroscopy, Scanning Electron Microscopy, and Energy Dispersive X-ray spectroscopy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
S. Ahmad Etghani ◽  
E. Ansari ◽  
S. Mohajerzadeh

AbstractWe report a novel and facile method to synthesize sulfur-doped titanium oxide sheets and realize TiS2-TiO2 heterostructures by means of a sequential sulfurization and oxidation step in a dual-zone chemical vapor deposition furnace. The inclusion of chlorine and argon gases during the growth of such titanium-based compounds plays a critical role in the formation of desired geometries and crystalline structures. These heterostructures possess nano-whisker and nanosheet configurations, controlled by adjusting the growth parameters such as temperature, carrier gas and the sequencing between different steps of the growth. The evolution of these complex heterostructures has been investigated using Raman spectroscopy and EDS characterization. The presence of chlorine gas during the growth results in local TiS2 formation as well as faceted growth of TiO2 nanosheets through anatase to rutile phase change prohibition. The electron microscopy (TEM) images and diffraction pattern (SAED) characterization reveal the crystallinity and layered nature of grown structures, further demonstrating the 2D characteristics of S-doped nanosheets. The evolution of TiO2 on TiS2 heterostructures has also has been verified using XPS analysis. These highly featured nanostructures are suitable candidates to enhance the photocatalytic behavior of TiO2 nanostructures.


Sign in / Sign up

Export Citation Format

Share Document