mixed powder
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 59)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Nicolas Mantel ◽  
David Bowden ◽  
Stanislav Herashchenko ◽  
Mike Fursdon ◽  
David Hancock ◽  
...  

Abstract In the conceptual design of EU-DEMO, damage to plasma-facing components under disruption events is planned to be mitigated by specific sacrificial limiter components. A new limiter concept has been proposed using lattice structures fabricated with tungsten powder by additive manufacturing techniques. The major potential benefits of using a lattice structure for limiters are the possibility to customise the thermal conductivity and structural compliance of the structure to manage temperatures and stress within material limits and lower sensitivity to crack propagation. This paper presents the results of the first investigations into the production, characterisation, and high heat flux testing of the lattices to assess their suitability for DEMO limiters. First stage prototypes have been manufactured from tungsten and tungsten tantalum mixed powder with two distinct laser power bed fusion processes, namely pulsed laser and continuous laser with heated bed. The samples are characterised in terms of mass, volume, density, extent of microcracks and voids, level of un-melted or partially melted particulates, texture and grain size, as well as tantalum segregation when applicable. High transient (0.25ms) heat load testing, with hydrogen plasma of energy density up to ~3 MJm-2 was carried out at KIPT on the QSPA Kh-50. These tests have shown that the energy absorbed by latticed targets preheated at 500°C is close to that absorbed by solid tungsten, suggesting that they may be used for limiter applications with the added advantage of adjustment of the heat transfer and stiffness performance by geometry design or material properties.


2022 ◽  
Vol 905 ◽  
pp. 254-262
Author(s):  
Feng Guo Liu ◽  
Ya Nan Zhang ◽  
Hao Chen ◽  
Si Cheng Li ◽  
Ren Guo Guan

2024Al alloy powder as matrix material with nanocopper-modified graphene as reinforcement was studied to explore the effects of graphene on the tissue, hardness, friction performance of the composite. The Cu/Gr/2024Al composites were prepared via three-dimensional mixed powder and vacuum hot press sintering. The results found that the nanocopper-modified graphene could be uniformly distributed in the aluminum alloy matrix, and formed a good binding interface with the matrix material. When the graphene content was 0.75 wt.% and 1.0wt%, the impact yield strength and the hardness reached the maximum of 434.8 MPa and 118.4 HV5, which were 27.24% and 43.11% higher than that of 2024Al respectively. Furthermore, with the increase of nanocopper-modified graphene content, the corrosion resistance of composite materials in 3.5%Cl-concentration solution was improved.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2035
Author(s):  
Kwang-jin Lee ◽  
DaeHan Kim

Hardfacing layers on mild steel substrates were successfully manufactured using a plasma transferred arc welding (PTAW) process to combine tungsten carbide powder and binder metal. Three morphological types of tungsten carbide powder were employed: spherical, fused angular, and mixed powder. The effects of both the morphology and the quantity of tungsten carbide powder on the wear property of the products were determined using a dry sand wheel abrasion test. The results revealed that two conditions effectively increased the wear resistance of the hardfacing layers: the use of spherical tungsten carbide and the use of an increased quantity of tungsten carbide. Moreover, the formation of an interfacial layer of intermetallic compounds (IMCs) between the tungsten carbide and binder metal, and the relationship between the microstructure of the IMC layer and its wear property were also investigated. It was confirmed that, in general, preferential wear occurs in the binder metal region. It was also unveiled that the wear property improves when interfacial IMC bands are formed and grown to appropriate width. To obtain a sound layer more resistant to wear, the PTAW conditions should be adequately controlled. In particular, these include the process peak temperature and the cooling rate, which affect the formation of the microstructure.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012040
Author(s):  
Nur Hazlinda Jakfar ◽  
Khor Shing Fhan ◽  
Banjuraizah Johar ◽  
Nur Maizatul Shima Adzali ◽  
Siti Nur Hazwani Mohd. Yunus ◽  
...  

Abstract This study focuses on the synthesis of synthetic calcium monosilicate ceramic from chicken eggshells and rice husks waste through the mechanochemical route that relatively straightforward without adding any binders. Synthetic calcium monosilicate was mixed using a 1:1 ratio of calcined eggshell and rice husk ash, which both materials known as rich in calcium oxide and silica sources, respectively. The mixed powder was pressed using uniaxial pressing before fired at 1100°C, 1150°C, 1200°C, 1250°C, and 1300°C for 120 minutes with a heating rate of 5°C/min. The XRD spectrum from 1100°C to 1200°C mainly consists of pseudowollastonite (ICSD: 98-005-2576), wollastonite and silicon dioxide phases. However, as the sintering temperature increases, the wollastonite phases was completely transformed into pseudowollastonite, leaving some unreacted silica.


Author(s):  
Manjunatha Kuruba ◽  
Giridhara Gaikwad ◽  
Jegadeeswaran Natarajan ◽  
Praveennath G Koppad

NiCr–Cr3C2 coatings are widely used for high temperature and tribological applications due to their high hardness, oxidation, and wear resistance properties. In the present investigation, an attempt is made to further enhance the hardness and adhesion strength of NiCr–Cr3C2 coatings by reinforcing them with multi-walled carbon nanotubes. The carbon nanotubes (3–7 wt%) with varying weight percentages were mixed with NiCr–Cr3C2 using a planetary ball rolling mill and sprayed on SA213 T12 (T12 alloy steel tube) using a high-velocity oxy-fuel spraying process. The microstructures of mixed powder, coating cross-section, and fractured coating surface were characterized using a scanning electron microscope while X-ray diffraction was used for phase identification in the fractured coating surface. The coated samples were subjected to microhardness and adhesion strength tests according to ASTM E384 and ASTM D4541-09 standards. Out of all coatings, NiCr–Cr3C2/7% carbon nanotube composite coating showed the lowest porosity of 1.17%, highest microhardness, and adhesion strength of 563.8 HV and 55.8 MPa, respectively. A fracture analysis after a pull-off adhesion test revealed adhesion failure for NiCr–Cr3C2 coating and combined adhesion/cohesion failure for NiCr–Cr3C2/7% carbon nanotube composite coating.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wenchao Xi ◽  
Boxue Song ◽  
Jinlong Dong ◽  
Tianqi Zhang ◽  
Tianbiao Yu ◽  
...  

Purpose Laser cladding has been used in the field of repairing damaged parts of machine tools due to its advantages of less processing restrictions and easy formation of a good metallurgical bond with the base material. However, the mechanical properties of the coating sometimes cannot meet the process requirements. Therefore, the purpose of this paper is to prepare coatings with high microhardness and flexural strength. Design/methodology/approach The YCF102 alloy powder was mixed with different contents of Co and tested for laser cladding on AISI 1045 substrate under the same process parameters. The main phase composition of the coating was revealed by the XRD results. The main chemical composition of the coating was determined by the SEM and EDS results. In addition, the effect of Co content on the microstructure, microhardness and flexural strength of the coatings was investigated. Findings The results show that when the Co content is 2 wt% and 4 wt%, Co does not form compounds with other elements, but is uniformly distributed in the coating. And when the Co content is 6 wt% and 8 wt%, the Co reacts with Fe in the coating and generates Co3Fe7 in situ. The increase in Co did not result in a monotonic change in microhardness, but significantly improved the flexural strength and the flatness of the microstructure of the coating. When the Co content of the mixed powder is 8 wt%, the coating has high microhardness and flexural strength. Originality/value Co/YCF102 composite coating with high microhardness and flexural strength was prepared. This paper provides a theoretical and practical basis for research in the area of repairing damaged parts of machine tools by laser cladding.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4373
Author(s):  
Yuqiang Feng ◽  
Zexu Du ◽  
Zhengfei Hu

This paper investigated 55 NiTi commercial alloy powder and 55 NiTi with 5% pure Ni mixed powder (55 NiTi + 5 Ni) coatings fabricated by laser cladding to study the effect of extra Ni addition on the microstructure and properties of the coating. The XRD and EDS results show that the major phases in the coatings were NiTi and Ni3Ti. Besides that, a second phase like Ni4Ti3, Fe2Ti, and NiTi2 was also detected, among which, NiTi2 was only found in 55 NiTi coating. The proportion of the phase composition in the coating was calculated via the software Image-Pro Plus. The hardness of the cladding layer reaches 770–830 HV, which was almost four times harder than the substrate, and the hardness of 55 NiTi + 5 Ni coating was around 8% higher than that of 55 NiTi coating. The wear resistance of the 55 NiTi + 5 Ni coating was also better; the wear mass loss decreased by about 13% and with a smaller friction coefficient compared with the 55 NiTi coating. These results are attributed to the solid solution strengthening effect caused by Ni addition and the second phase strengthening effect caused by the content increase of the Ni3Ti phase in the cladding layer.


Author(s):  
Hiroharu Kawasaki ◽  
Tamiko OHSHIMA ◽  
Yoshihito YAGYU ◽  
Takeshi Ihara ◽  
Kazuhiko Mitsuhashi ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document