The Study of Heat Exchange Process between High-Temperature Liquid Metal Coolant and Liquid Steel during Crystallization

2020 ◽  
Vol 992 ◽  
pp. 453-460
Author(s):  
Evgeny Neshporenko ◽  
S. Kartavtsev ◽  
S. Matveev

The paper presents the results of mathematical research of process of heat exchange between liquid metal coolant and molten steel. Research of process of heat exchange between liquid metal coolant and crystallizing the steel at temperatures above 1773 K allowed to determine parameters such as: the intensity of heat transfer for mutual parallel flow and counter flow, the minimum required length of heat exchange zone; the coolant that provides the best energy performance.

Author(s):  
Л. А. Кущев ◽  
В. Н. Мелькумов ◽  
Н. Ю. Саввин

Постановка задачи. Рассматривается теплообменный процесс, протекающий в модифицированном гофрированном межпластинном канале интенсифицированного пластинчатого теплообменного аппарата с повышенной турбулизацией теплоносителя. Необходимо разработать компьютерную модель движения теплоносителя в диапазоне скоростей 0,1-1,5 м/с и определить коэффициент турбулизации пластинчатого теплообменника. Результаты. Приведены результаты компьютерного моделирования движения теплоносителя в межпластинном гофрированном канале оригинального пластинчатого теплообменного аппарата с помощью программного комплекса Аnsys . Определены критерии устойчивости системы. Выполнено 3 D -моделирование канала, образуемого гофрированными пластинами. При исследовании процесса турбулизации были рассмотрены несколько скоростных режимов движения теплоносителя. Определен коэффициент турбулизации Tu, %. Выводы. В результате компьютерного моделирования установлено увеличение коэффициента теплопередачи К, Вт/(м ℃ ) за счет повышенной турбулизации потока, что приводит к снижению металлоемкости и уменьшению стоимости теплообменного оборудования. Statement of the problem. The heat exchange process occurring in a modified corrugated interplate channel of an intensified plate heat exchanger with an increased turbulence of the heat carrier is discussed. A computer model of the coolant movement in the speed range of 0.1-1.5 m/s is developed and the turbulence coefficient of the plate heat exchanger is determined. Results. The article presents the results of computer modeling of the coolant movement in the interplate corrugated channel of the original plate heat exchanger using the Ansys software package. The criteria of system stability are defined. 3D modeling of the channel formed by corrugated plates is performed. In the study of the process of turbulence several high-speed modes of movement of the coolant were considered. The turbulence coefficient Tu, % is determined. Conclusions. As a result of computer simulation, an increase in the heat transfer coefficient K, W/(m ℃) was found due to an increased turbulization of the flow, which leads to a decrease in metal consumption and a decrease in the cost of heat exchange equipment.


2016 ◽  
Vol 23 (3) ◽  
pp. 379-382
Author(s):  
O. N. Kashinsky ◽  
P. D. Lobanov ◽  
A. S. Kurdyumov ◽  
N. A. Pribaturin

2019 ◽  
Vol 252 ◽  
pp. 05019 ◽  
Author(s):  
Robert Zarzycki ◽  
Justyna Jędras

The study presents the problem of heat exchange in the biomass carbonisation reactor with cyclic operation. Based on the actual parameter of the biomass carbonisation reactor, a geometrical model was developed, and the computation of the heating process was conducted for two cases: an empty reactor and a filled reactor. Its result demonstrated that for the analysed configuration of the reactor, the process of heating biomass in the containers is limited by the capability of heat transfer to the biomass in the container. The results suggest opportunities for the improved heat exchange in the reactor and, accordingly, shortening heating time through installation of the system that forces circulation of hot air inside the reactor.


Author(s):  
Jing Liu ◽  
Yue-Guang Deng ◽  
Zhong-Shan Deng

Efficient cooling of a high performance computer chip has been an extremely important however becoming more and more tough issue. The recently invented liquid metal cooling method is expected to pave the way for high flux heat dissipation which is hard to tackle otherwise by many existing conventional cooling strategies. However, as a new thermal management method, its application also raised quite a few challenging fundamental and practical issues for solving. To illustrate the development of the new technology, this talk is dedicated to present an overview on the latest advancements made in the author’s lab in developing the new generation chip cooling device based on the liquid metal coolant with melting point around room temperature. The designing and optimization of the cooling device and component will be discussed. Several major barriers to prevent the new method from practical application such as erosion between liquid metal coolant and its substrate material will be outlined with good solutions clarified. Performance comparison between the new chip cooling method with commercially available products with highest quality such as air cooling, water cooling and heat pipe cooling devices were evaluated. Typical examples of using liquid metal cooling for the thermal management of a real PC or even super computer will be demonstrated. Further, miniaturizations on the prototype device by extending it as a MEMS cooling device or mini/micro channel liquid metal cooling device will also be explained. Along with the development of the hardware, some fundamental heat transfer issues in characterizing the liquid metal cooling device will be discussed through numerical or analytical model. Future challenging issues in pushing the new technology into large scale practices will be raised. From all the outputs obtained so far, it can be clearly seen that the new cooling strategy will find very promising and significant applications in a wide variety of engineering situations whenever thermal managements or heat transport are needed.


Sign in / Sign up

Export Citation Format

Share Document