Effect of Thickness on Micro-Structural and Optical Properties of Al-Doped ZnO Films Prepared by Sol-Gel Spin Coating

2017 ◽  
Vol 17 ◽  
pp. 171-178 ◽  
Author(s):  
T. Ganesh ◽  
K. Perumal ◽  
R. Kumar ◽  
N. Bhaskar

Aluminium (Al) doped Zinc oxide (ZnO) thin films of different thicknesses were prepared on glass substrates by sol-gel spin coating method. The effect of thicknesses on micro-structural and optical properties was investigated for transparent conducting oxide (TCO) application in solar cells and other optoelectronic applications. Grazing incidence x-ray diffraction (GIXRD) showed maximum orientation along (002) plane of c-axis. The variation of different structural parameters like crystallite size, micro-strain, c-axis strain, dislocation density as a function of film thickness was investigated. The FTIR spectra confirmed the formation of Al-doped ZnO film. FESEM images showed spherical shaped nanosized grains and formation of micro pores. The optical absorption increased and absorption peak shifted towards longer wavelength (red shift) with increase in the thickness of the film respectively. The optical transmittance of all the films has a transparency of more than 75% in the visible region. The optical band gap (Eg) decreased with increase in the film thickness. The diffused reflectance (DRS) showed very low reflectance in the region of 400-800 nm, but increased in the 800-900 nm region. Photoluminescence (PL) spectra of the prepared films showed intense band edge UV and low intense visible emissions respectively. The effect of thickness of Al-doped ZnO film on micro-structure, surface morphology, optical absorption and transmittance, diffused reflectance and PL have been investigated and the results are reported.

2013 ◽  
Vol 641-642 ◽  
pp. 547-550 ◽  
Author(s):  
Ying Xiang Yang ◽  
Hong Lin Tan ◽  
Cheng Lin Ni ◽  
Chao Xiang

Un-doped and (Cu, Al)-doped ZnO thin films were prepared by sol-gel spin coating technique on glass substrate. The effect of(Cu, Al)incorporation on the structural, morphological and optical properties of the Zinc oxide (ZnO)film was investigated by means of X-ray diffraction, scanning electron microscopy and UV-vis spectrophotometer. It has been found that the grain sizes, Optical band gap and the preferred orientation growth of (002) plane were decreased with increasing of (Cu, Al) dopants amount in ZnO films.


2014 ◽  
Vol 925 ◽  
pp. 401-405 ◽  
Author(s):  
Sharul Ashikin Kamaruddin ◽  
Mohd Zainizan Sahdan ◽  
Kah Yoong Chan ◽  
Nayan Nafarizal ◽  
Hashim Saim

The Zinc Oxide (ZnO) films were fabricated on glass coated with indium tin oxide (ITO) substrate by sol-gel spin coating technique. With regard to the preheating temperatures, the effects of growth mechanism ZnO films on the optical and structural properties were investigated. In this study, the preheating temperatures were varied from 250°C, 280°C, and 300°C. The X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectroscopy were used to examine the structural and optical properties of the ZnO films. The XRD results revealed that, the ZnO films are highly crystalline for all samples which are dominated by (002) peak orientation. Meanwhile, observation from optical results indicated that, the variation of transmittance spectra were turn out and it is proportional to the preheating temperatures used. Overall, we realized that the properties of the ZnO films in the sol-gel spin coating technique strongly depend on the preheating temperature and need to be considered as important factor to obtain the high-quality of the ZnO films. Keywords: Sol-gel, Zinc oxide film, X-ray diffraction


2018 ◽  
Vol 52 ◽  
pp. 102-114 ◽  
Author(s):  
Rene Pérez-Cuapio ◽  
Mauricio Pacio ◽  
Hector Juarez ◽  
Jose Alberto Alvarado ◽  
Cesia Guarneros ◽  
...  

In this study, we report the effect of ZnO film thickness on its optical and structural properties. The sol solution was synthesized by sol-gel method and deposited on silicon substrates by spin coating technique. The ZnO films thickness was varied from 60 to 180 nm. The ZnO films obtained showed a highly preferred orientation along the (002) plane. It was also observed that the crystallite size was not affected by increasing thickness. Transmittance measurements indicated that the ZnO films have a high transparency in the visible range (~90 %), which remained constant with thickness. Morphological evolution measurements confirmed that the thinner ZnO film consist mostly of a porous layer which became homogeneous and compact to increase the thickness. Photoluminescence measurements exhibit a strong ultraviolet (UV) emission, and the emission intensity was improved with thickness due to crystallinity enhancement.


2020 ◽  
Vol 38 (1) ◽  
pp. 17-22
Author(s):  
G Balakrishnan ◽  
Vivek Sinha ◽  
Yogesh Palai Peethala ◽  
Manoj Kumar ◽  
R.J. Golden Renjith Nimal ◽  
...  

AbstractZinc oxide (ZnO) thin films were deposited on Si (1 0 0) and glass substrates by sol-gel spin coating technique. Zinc acetate dihydrate, monoethanolamine and isopropanol were used as the sources for precursor solution and the resulting gel was used for the preparation of ZnO thin films. The films were annealed at different temperatures (100 °C to 500 °C) and the effect of annealing on the structural and optical properties was investigated. X-ray diffraction (XRD) and UV-Vis spectroscopy were used for the analysis of the films. The XRD results indicated the polycrystalline hexagonal structure of the ZnO films with (0 0 2) orientation. The optical properties of the films were studied using UV-Vis spectrophotometer in the wavelength range of 190 – 1100 nm. The optical characterization of the ZnO thin films showed the high transmittance of ~90 % for the films annealed at 400 °C. The films showed the absorbance ~360 – 390 nm and bandgap values of 3.40 – 3.10 eV, depending on the annealing temperature of the films.


Sign in / Sign up

Export Citation Format

Share Document