Ion Conducting Behaviors of Polymeric Composite Electrolytes Containing Mesoporous Silicates

2007 ◽  
Vol 119 ◽  
pp. 51-54
Author(s):  
Seok Kim ◽  
Sung Goo Lee ◽  
Soo Jin Park

Polymeric composite electrolytes (PCE) based on poly(ethylene oxide) (PEO) and mesoporous silicates as a filler material were fabricated, and investigated for understanding the effects of filler addition into the polymer matrix on the ionic conductivity. For a lithium battery application, it is necessary to increase ion conductivity of PCE by modification of microstructure. The ionic conductivity was enhanced with increasing MCM-41 contents due to the decreased crystallinity of PEO. Furthermore, the regular mesoporous structure could be functioned as an ion transfer channel for high ion mobility.

2006 ◽  
Vol 111 ◽  
pp. 155-158 ◽  
Author(s):  
Seok Kim ◽  
J.Y. Kang ◽  
Sung Goo Lee ◽  
Jae Rock Lee ◽  
Soo Jin Park

In this work, the polymeric electrolyte composites (PECs) based on poly(ethylene oxide) (PEO), ethylene carbonate (EC) as a plasticizer, and lithium montmorillonite (Li-MMT) clay were fabricated, and investigated for understanding the effects of Li-MMT/EC in the polymer matrix on the ionic conductivity. For a lithium battery application, the native sodium cations in MMT were exchanged for lithium cations. As a result, the lithium ion was intercalated into the layer of the MMT clay, and thus PEO entered the galleries of MMT clay. The ionic conductivity was enhanced with increasing MMT contents due to the immobile MMT clay serving as the anion species and the decreased crystallinity of PEO.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Patrick Walke ◽  
Anna Kirchberger ◽  
Felix Reiter ◽  
Daniel Esken ◽  
Tom Nilges

Abstract In this study, we investigated the effect of nanostructured Al2O3 particles on Li ion conducting, poly(ethylene oxide) (PEO)-based membranes prepared by electrospinning, solution casting and hot pressing. Pure PEO:LiBF4 solid polymer electrolytes (SPEs) and also plasticizer containing membranes were investigated with various amounts of Al2O3. In a first step, the best-performing composition of pure PEO:LiBF4 concerning the resulting ionic conductivity was identified and used as a standard for further experiments. In the following, the influence of the preparation method, the nature of the Al2O3, and the type of the plasticizer additives on the thermal and electrochemical properties for this standard composition were investigated. The Al2O3 composition was varied between 1 and 5 wt%. The ionic conductivity of bare electrospun PEO:LiBF4 SPE standard material has been improved by a factor ten to 1.9 × 10−6 S cm−1 at T = 293 K when 5 wt% of Al2O3 is added. For solution-casted PEO:LiBF4 standard compositions 18:1 with an initial ionic conductivity of 6.7 × 10−8 S cm−1, the addition of 2 wt% Al2O3 increased the performance to 1.4 × 10−7 S cm−1, both at T = 293 K. If succinonitrile and Al2O3 was admixed to the solution casted standard material, the ionic conductivity was further increased to reach 5.5 × 10−5 S cm−1 at T = 293 K. This material with a composition of 18:3:1 + 2 wt% Al2O3, outperforms the standard material by three orders of magnitude.


2000 ◽  
Vol 628 ◽  
Author(s):  
G. González ◽  
P. J. Retuert ◽  
S. Fuentes

ABSTRACTBlending the biopolymer chitosan (CHI) with poly (aminopropilsiloxane) oligomers (pAPS), and poly (ethylene oxide) (PEO) in the presence of lithium perchlorate lead to ion conducting products whose conductivity depends on the composition of the mixture. A ternary phase diagram for mixtures containing 0.2 M LiClO4 shows a zone in which the physical properties of the products - transparent, flexible, mechanically robust films - indicate a high degree of molecular compatibilization of the components. Comparison of these films with binary CHI-pAPS nanocomposites as well as the microscopic aspect, thermal behavior, and X-ray diffraction pattern of the product with the composition PEO/CHI/pAPS/LiClO4 1:0.5:0.6:0.2 molar ratio indicates that these films may be described as a layered nanocomposite. In this composite, lithium species coordinated by PEO and pAPS should be inserted into chitosan layers. Electrochemical impedance spectroscopy measurements indicate the films are pure ionic conductors with a maximal bulk conductivity of 1.7*10-5 Scm-1 at 40 °C and a sample-electrode interface capacitance of about 1.2*10-9 F.


Ceramics ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 421-436
Author(s):  
Aamir Iqbal Waidha ◽  
Vanita Vanita ◽  
Oliver Clemens

Composite electrolytes containing lithium ion conducting polymer matrix and ceramic filler are promising solid-state electrolytes for all solid-state lithium ion batteries due to their wide electrochemical stability window, high lithium ion conductivity and low electrode/electrolyte interfacial resistance. In this study, we report on the polymer infiltration of porous thin films of aluminum-doped cubic garnet fabricated via a combination of nebulized spray pyrolysis and spin coating with subsequent post annealing at 1173 K. This method offers a simple and easy route for the fabrication of a three-dimensional porous garnet network with a thickness in the range of 50 to 100 µm, which could be used as the ceramic backbone providing a continuous pathway for lithium ion transport in composite electrolytes. The porous microstructure of the fabricated thin films is confirmed via scanning electron microscopy. Ionic conductivity of the pristine films is determined via electrochemical impedance spectroscopy. We show that annealing times have a significant impact on the ionic conductivity of the films. The subsequent polymer infiltration of the porous garnet films shows a maximum ionic conductivity of 5.3 × 10−7 S cm−1 at 298 K, which is six orders of magnitude higher than the pristine porous garnet film.


Sign in / Sign up

Export Citation Format

Share Document