Analysis of Internal Friction Peaks in High Purity Molybdenum by a Viscoelastic Procedure Independent of the Relaxation Strength

2008 ◽  
Vol 137 ◽  
pp. 49-58
Author(s):  
C.L. Matteo ◽  
O.A. Lambri ◽  
G.I. Zelada-Lambri ◽  
P.A. Sorichetti ◽  
Jose Angel García

In this work we present a novel procedure, involving linear viscoelastic analysis, to discriminate the two possible contributions of the observed damping peak which appears around 840 K – 1050 K in mechanically deformed high purity single-crystalline molybdenum. An interesting feature of the procedure is that, for low damping samples, it can efficiently resolve experimental peaks that result from the superposition of different processes independently of the ratio between their relaxation strengths. This allows us to confirm that two different relaxation processes appear in molybdenum in the temperature range about 0.3 Tm, one around 840 K, and the other one near 1050 K. These can be related to diffusion and to a coupled mechanism involving creation and diffusion of vacancies, respectively.

2005 ◽  
Vol 495-497 ◽  
pp. 603-608 ◽  
Author(s):  
Atsushi Todayama ◽  
Hirosuke Inagaki

On the basis of Taylor-Bishop-Hill’s theory, many previous theoretical investigations have predicted that, at high rolling reductions, most of orientations should rotate along theβfiber from {110}<112> to {123}<634> and finally into the {112}<111> stable end orientations. Although some exceptions exist, experimental observations have shown, on the other hand, that the maximum on the β fiber is located still at about {123}<634> even after 97 % cold rolling. In the present paper, high purity Al containing 50 ppm Cu was cold rolled up to 99.4 % reduction in thickness and examined whether {112}<111> stable end orientation could be achieved experimentally. It was found that, with increasing rolling reduction above 98 %, {110}<112> decreased, while orientations in the range between {123}<634> and {112}<111> increased, suggesting that crystal rotation along the βfiber from {110}<112> toward {123}<634> and {112}<111> in fact took place. At higher rolling reductions, however, further rotation of this peak toward {112}<111> was extremely sluggish, and even at the highest rolling reduction, it could not arrive at {112}<111>. Such discrepancies between theoretical predictions and experimental observations should be ascribed to the development of dislocation substructures, which were formed by concurrent work hardening and dynamic recovery. Since such development of dislocation substructures are not taken into account in Taylor-Bishop-Hill’s theory, it seems that they can not correctly predict the development of rolling textures at very high rolling reductions, i. e. stable end orientations. On annealing specimens rolled above 98 % reduction in thickness, cube textures were very weak, suggesting that cube bands were almost completely rotated into other orientations during cold rolling. {325}<496>, which lay at an intermediate position between {123}<634> and {112}<111> along theβfiber, developed strongly in the recrystallization textures.


1998 ◽  
Vol 5 (3) ◽  
pp. 958-961
Author(s):  
D. C. Creagh ◽  
P. M. O'Neill ◽  
R. J. Mills ◽  
S. A. Holt

Two systems have been developed for the simultaneous recording of the SAXS and the WAXS patterns from carbon fibre and elastomer samples which are placed under stress. The systems have been designed to fit inside the versatile vacuum diffractometer (BIGDIFF) at the Photon Factory. In one system, use is made of the ability to move the imaging-plate cassette. In the other, use has been made of an imaging-plate changer which can deliver up to 13 plates into position with a duty cycle of about 60 s. In this case each imaging plate can record SAXS/WAXS patterns in the range 0.5–20° due to the passage of the beam through the specimen which is mounted in a specially designed tensometer. Because BIGDIFF is a vacuum diffractometer and parasitic scattering is small, exposure times as short as 2 s can give acceptable SAXS/WAXS patterns. The systems have been used for the study of both the change of structure with strain, and the relaxation processes which occur as a result of the sample being strained at a fixed rate by a predetermined amount.


1984 ◽  
Vol 24 (06) ◽  
pp. 606-616 ◽  
Author(s):  
Charles P. Thomas ◽  
Paul D. Fleming ◽  
William K. Winter

Abstract A mathematical model describing one-dimensional (1D), isothermal flow of a ternary, two-phase surfactant system in isotropic porous media is presented along with numerical solutions of special cases. These solutions exhibit oil recovery profiles similar to those observed in laboratory tests of oil displacement by surfactant systems in cores. The model includes the effects of surfactant transfer between aqueous and hydrocarbon phases and both reversible and irreversible surfactant adsorption by the porous medium. The effects of capillary pressure and diffusion are ignored, however. The model is based on relative permeability concepts and employs a family of relative permeability curves that incorporate the effects of surfactant concentration on interfacial tension (IFT), the viscosity of the phases, and the volumetric flow rate. A numerical procedure was developed that results in two finite difference equations that are accurate to second order in the timestep size and first order in the spacestep size and allows explicit calculation of phase saturations and surfactant concentrations as a function of space and time variables. Numerical dispersion (truncation error) present in the two equations tends to mimic the neglected present in the two equations tends to mimic the neglected effects of capillary pressure and diffusion. The effective diffusion constants associated with this effect are proportional to the spacestep size. proportional to the spacestep size. Introduction In a previous paper we presented a system of differential equations that can be used to model oil recovery by chemical flooding. The general system allows for an arbitrary number of components as well as an arbitrary number of phases in an isothermal system. For a binary, two-phase system, the equations reduced to those of the Buckley-Leverett theory under the usual assumptions of incompressibility and each phase containing only a single component, as well as in the more general case where both phases have significant concentrations of both components, but the phases are incompressible and the concentration in one phase is a very weak function of the pressure of the other phase at a given temperature. pressure of the other phase at a given temperature. For a ternary, two-phase system a set of three differential equations was obtained. These equations are applicable to chemical flooding with surfactant, polymer, etc. In this paper, we present a numerical solution to these equations paper, we present a numerical solution to these equations for I D flow in the absence of gravity. Our purpose is to develop a model that includes the physical phenomena influencing oil displacement by surfactant systems and bridges the gap between laboratory displacement tests and reservoir simulation. It also should be of value in defining experiments to elucidate the mechanisms involved in oil displacement by surfactant systems and ultimately reduce the number of experiments necessary to optimize a given surfactant system.


1939 ◽  
Vol 29 (3) ◽  
pp. 487-496
Author(s):  
L. Don Leet

Summary In general, then, the concentrated energy at the source is actually divided among the principal wave types, which are there added together. Within very short distances, however, these wave types begin to separate because of their different velocities. There are thus two factors working to reduce the maximum shaking to which the ground is subjected. One is the natural decay of each wave with distance, as internal friction exhausts its original energy. The other, which is usually the dominating effect at short distances, is this stringing out of the wave types, each carrying its portion of the initial energy, until there is no longer any concentration where two or more types join forces to produce additive amplitudes.


1997 ◽  
Vol 282-287 ◽  
pp. 1575-1576 ◽  
Author(s):  
B. Kusz ◽  
M. Gazda ◽  
W. Sadowski

Sign in / Sign up

Export Citation Format

Share Document