relaxation strength
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Francis Owusu ◽  
Martin Tress ◽  
Frank A. Nüesch ◽  
Sandro Lehner ◽  
Dorina M. Opris

Polar polynorbornenes prepared by ring-opening metathesis polymerization show thermally switchable dielectric permittivity. The polymers exhibit a large dielectric relaxation strength and high glass transition temperature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. L. Ngai ◽  
Z. Wojnarowska ◽  
M. Paluch

AbstractThe studies of molecular dynamics in the vicinity of liquid–glass transition are an essential part of condensed matter physics. Various experimental techniques are usually applied to understand different aspects of molecular motions, i.e., nuclear magnetic resonance (NMR), photon correlation spectroscopy (PCS), mechanical shear relaxation (MR), and dielectric spectroscopy (DS). Universal behavior of molecular dynamics, reflected in the invariant distribution of relaxation times for different polar and weekly polar glass-formers, has been recently found when probed by NMR, PCS, and MR techniques. On the other hand, the narrow dielectric permittivity function ε*(f) of polar materials has been rationalized by postulating that it is a superposition of a Debye-like peak and a broader structural relaxation found in NMR, PCS, and MR. Herein, we show that dielectric permittivity representation ε*(f) reveals details of molecular motions being undetectable in the other experimental methods. Herein we propose a way to resolve this problem. First, we point out an unresolved Johari–Goldstein (JG) β-relaxation is present nearby the α-relaxation in these polar glass-formers. The dielectric relaxation strength of the JG β-relaxation is sufficiently weak compared to the α-relaxation so that the narrow dielectric frequency dispersion faithfully represents the dynamic heterogeneity and cooperativity of the α-relaxation. However, when the other techniques are used to probe the same polar glass-former, there is reduction of relaxation strength of α-relaxation relative to that of the JG β relaxation as well as their separation. Consequently the α relaxation appears broader in frequency dispersion when observed by PCS, NMR and MR instead of DS. The explanation is supported by showing that the quasi-universal broadened α relaxation in PCS, NMR and MR is captured by the electric modulus M*(f) = 1/ε*(f) representation of the dielectric measurements of polar and weakly polar glass-formers, and also M*(f) compares favorably with the mechanical shear modulus data G*(f).


2021 ◽  
Author(s):  
K. L. Ngai ◽  
Zaneta Wojnarowska ◽  
Marian Paluch

Abstract The frequency dispersion of structural α-relaxation obtained from broadband dielectric spectroscopy measurements is relatively narrow in many polar glass-formers. On the other hand, it becomes much broader when probed by other techniques, including photon correlation spectroscopy (PCS), nuclear magnetic resonance (NMR), and mechanical shear modulus. Therefore, the dynamics of glass-formers observed by dielectric permittivity spectroscopy (DS) is called into question. Herein we propose a way to resolve this problem. First, we point out an unresolved Johari-Goldstein (JG) β-relaxation is present nearby the α-relaxation in these polar glass-formers. The dielectric relaxation strength of the JG β-relaxation is sufficiently weak compared to the α-relaxation so that the narrow dielectric frequency dispersion faithfully represents the dynamic heterogeneity and cooperativity of the α-relaxation. However, when the other techniques are used to probe the same glass-former, there is a reduction of relaxation strength of α-relaxation relative to that of the JG β-relaxation. Additionally, the separation between the α and the JG β relaxations in dielectric permittivity) decreases when probed by mechanical shear modulus. These changes in relation of α- to JG β-relaxation, when examined by the other techniques, engender the non-negligible contribution of the latter to the former. Hence the apparent α-relaxation is broader than observed by the dielectric permittivity. The broadening is artificial because it is due to a confluence of the α and JG β relaxations with a disparity in their relaxation strengths much less when the other techniques than by dielectric permittivity are used. This explanation is supported by showing the α-relaxation of polar glass-formers becomes broader when the dielectric data are represented in terms of the electric modulus instead of permittivity. The broadening, in this case, is again due to a reduction of the relaxation strength of the α-relaxation relative to that of the JG β-relaxation in the electric modulus representation. A corollary of the explanation applicable to weakly polar glass-formers having JG β-relaxation widely separated from the α-relaxation is the prediction that the frequency dispersion of dielectric α-relaxation is nearly the same as that of the electric modulus, and there is no significant additional broadening when probed by the other techniques. A host of experimental data from the literature and our new measurements are given to support the explanation for polar glass-formers and the ancillary prediction for weakly polar glass-formers. Thus the narrow frequency dispersion of the intense relaxation in polar glass-formers observed by dielectric permittivity is real and genuinely represents the dynamically heterogeneous and cooperative dynamics of α-relaxation. By contrast, the broad dispersion found by the other techniques is artificial and misleading.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 589 ◽  
Author(s):  
Zhonglei Li ◽  
Mingsheng Fan ◽  
Zhuoyan Zhong ◽  
Boxue Du

This work focuses on the coupling effect of molecular chain displacement and trap characteristics on direct current (DC) breakdown properties of high density/low density polyethylene (HDPE/LDPE) blend insulation. Frequency domain spectroscopy (FDS) and isothermal discharge current (IDC) are used to characterize the dielectric relaxation and trap characteristics of HDPE/LDPE blends. A DC breakdown model is proposed to reveal the mechanisms of the molecular chain displacement and carrier trap on the DC breakdown strength. The dielectric relaxation α and δ present segmental motions and thermal ion polarization behaviours of HDPE/LDPE blends, respectively. α dielectric relaxation strength (Δεα) increases as the amount of HDPE increases from 0 to 5 wt%, and then declines with a further increase of HDPE content to 20 wt%. According to the velocity equation, the increase of Δεα will increase the molecular chain displacement, resulting in a larger free volume, which will provide electrons with larger free path λ to form hot electrons. A positive correlation exists between the activation energy of the dielectric relaxation process δ and trap density, and the increase of δ dielectric relaxation strength (Δεδ) will adversely affect the breakdown strength of the specimen. HDPE/LDPE blends with 15 wt% HDPE content have lower Δεα and lowest Δεδ, which decreases the mean free path λ of molecular chain and thermal ion polarization. At the same time, it has the highest deep trap density, thus increasing the probability of hot electrons being captured and improving the DC breakdown strength. It is concluded the breakdown of the dielectric is synergistically affected by the molecular chain displacement and carrier trap.


Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 721
Author(s):  
Ian Jackson

There is an important complementarity between experimental methods for the study of high-temperature viscoelasticity in the time and frequency domains that has not always been fully exploited. Here, we show that the parallel processing of forced-oscillation data and microcreep records, involving the consistent use of either Andrade or extended Burgers creep function models, yields a robust composite modulus-dissipation dataset spanning a broader range of periods than either technique alone. In fitting this dataset, the alternative Andrade and extended Burgers models differ in their partitioning of strain between the anelastic and viscous contributions. The extended Burgers model is preferred because it involves a finite range of anelastic relaxation times and, accordingly, a well-defined anelastic relaxation strength. The new strategy offers the prospect of better constraining the transition between transient and steady-state creep or, equivalently, between anelastic and viscous behaviour.


Author(s):  
Shipra Baluja ◽  
Elham Abdullah Mo Alnayab

Measurement of ultrasonic velocity, density and viscosity of solutions of Tetra Butyl Ammonium Bromide have been carried outin different solvents (water, methanol, ethanol, 1-propanol and 1-butanol) as functions of concentration (1 to 0.1 M) at different temperatures (298.15 K to 318.15 K). Using these experimental data, various acoustical and apparent parameters such as acoustical impedance, intermolecular free length, adiabatic compressibility, molar compressibility, Van der Waals constant, relaxation strength, apparent molar isentropic compressibility, apparent molar volume have been evaluated. Further, some thermodynamic parameters such as Gibbs free energy of activation, enthalpy and entropy of activation have been evaluated. All these parameters have been evaluated to understand type of interactions present in studied solutions.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2150 ◽  
Author(s):  
Natalia Petrova ◽  
Viktoriya Portnyagina ◽  
Vasilii Mukhin ◽  
Ee Shim ◽  
Jin-Ho Cho

Sealing rubbers employed in cold climates such as the Siberian Arctic must be able to withstand temperatures as low as −50 °C while still exhibiting specific relaxation, strength, tribological characteristics, and a resistance to aggressive media. Previous investigations of propylene oxide rubber (SKPO, Tg = −73 °C) modified with polytetrafluoroethylene (PTFE) have revealed that, while the rubber composite materials exhibit double the wear resistance compared to unmodified polypropylene oxide rubber, they have poor frost resistance. In the present study, we developed materials based on SKPO and ultrafine PTFE (UPTFE), which can be characterized by its smaller particle size, low molecular weight, high tribo-technical characteristics, and resistance to aggressive media. The properties of the rubber composites were evaluated using the standard methods. The structures of the materials were investigated by electron microscopy and XRD analysis. It was shown that the materials have excellent wear resistance, resistance to aggressive media, compression set, and low-temperature resistance. The addition of UPTFE is preferable to the addition of PTFE because the desired positive effects can be attained with only 0.5–1 parts per hundred parts of rubber (phr) UPTFE while 20 phr PTFE would be necessary.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Florinela Sirbu ◽  
Alina Catrinel Ion ◽  
Luiza Capra ◽  
Ion Ion

A thermodynamics study on exfoliated graphite nanoplatelets dispersed in tetrahydrofuran in comparison with activated carbon dispersed in same solvent was realised. The refractive index, speed of sound, and density of diluted mixed binary solutions of exfoliated graphite nanoplatelets and activated carbon in tetrahydrofuran were measured between 0 and 100 kg·m−3with composition step of 20 kg·m−3and at temperatures from 293.15 to 308.15 K and at normal pressure. The isentropic compressibility, acoustic impedance, specific refraction, relaxation strength, and space-filling factor have been evaluated for six concentrations, at four different temperatures for each system. The identified possible molecular interactions between the edges and the surface of exfoliated graphite nanoplatelets and tetrahydrofuran molecules, which include modifications in the structure of exfoliated nanostructured materials in tetrahydrofuran solvent and the influence of the temperature, and of the solute concentration have been calculated based on the obtained experimental values.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
P. P. Pal-Val ◽  
L. N. Pal-Val ◽  
A. P. Rybalko ◽  
E. N. Vatazhuk

The temperature dependences of acoustic properties of nanostructured and polycrystalline zirconium are investigated in the temperature range of 100–340 K. The effect of severe plastic deformation and subsequent annealing on key parameters of the Koiwa–Hasiguti acoustic relaxation in zirconium is studied in detail. It is established that, due to intensive plastic deformation, the relaxation strength considerably increases, and the temperature and the width of the corresponding relaxation peak systematically decrease with reduction of the mean grain size in the samples. Annealing leads to a partial recovery of the relaxation strength and the peak temperature back to the initial values in undeformed samples, but the width of the relaxation peak shows an additional decrease. The majority of the effects observed can be explained by changes in dislocation subsystems of the samples during intensive plastic deformation and annealing. An influence of a random scatter of the relaxation time on the main parameters of the Koiwa–Hasiguti peak is established using the statistical analysis based on the lognormal distribution. It is shown that the parameter β of the lognormal distribution determines the width, height, and asymmetry of the peak and also allows estimating the relaxation strength from the peak height. An algorithm for retrieving the parameter β from experimental data is presented.


Sign in / Sign up

Export Citation Format

Share Document