Advanced Si-based Semiconductors for Energy and Photonic Applications

2009 ◽  
Vol 156-158 ◽  
pp. 77-84 ◽  
Author(s):  
J. Kouvetakis ◽  
Jose Menendez ◽  
John Tolle

Group-IV semiconductors, including alloys incorporating Sn, have been grown on dimensionally dissimilar Si substrates using novel molecular hydride chemistries with tunable reactivities that enable low temperature, CMOS compatible integration via engineering of the interface microstructure. Here we focus on properties of three such Ge-based systems including: (1) device quality Ge layers with thicknesses >5m possessing dislocation densities <105/cm2 are formed using molecular mixtures of Ge2H6 and highly reactive (GeH3)2CH2 organometallic additives circumventing the classical Stranski-Krastanov growth mechanism, (2) metastable GeSn alloys are grown on Si via reactions of Ge2H6 and SnD4, and (3) ternary SiGeSn analogs are produced lattice-matched to Ge-buffered Si using admixtures of SiGeH6, SiGe2H8, SnD4, Ge2H6, and Si3H8. Optical experiments and prototype device fabrication demonstrate that the ternary SiGeSn system represents the first group-IV alloy with a tunable electronic structure at fixed lattice constant, effectively decoupling band gap and strain and eliminating the most important limitation in device designs based on group-IV materials. Doping at levels higher than 1019 cm-3 (both p and n-type) is achieved for all the above semiconductor systems using a similar precursor chemistry approach. Electrical and infrared optical experiments demonstrate that doped GeSn and SiGeSn have mobilities that compare or exceed that of bulk Ge. The potential applications of these materials, including micro- and optoelectronics as well as photovoltaics and thermoelectricity, are discussed.

1988 ◽  
Vol 116 ◽  
Author(s):  
M.M. Al-Jassim ◽  
Takashi Nishioka ◽  
Yoshio Itoh ◽  
Akio Yamamoto ◽  
Masafumi Yamaguchi

AbstractThe effectiveness of thermal annealing and strained layer superlattices (SLS's) in defect reduction in Si/GaAs structures was studied. The GaAs layers were grown on (100) Si substrates by low pressure MOCVD. They were evaluated by TEM, HREM, EBIC and PL. As-grown layers contained dislocation densities in the 108-109 cm−2 range, depending on the layer thickness. Post-growth and in situ annealing were performed on a wide variety of these structures. TEM examination showed that in situ annealing was more effective as it resulted in confining a large portion of the threading dislocations to the interface region. Furthermore, the interaction of threading dislocations to form closed loops was evident. Additionally, the effect of GaAs/GaInAs and GaInAs/GaAsP SLS's on dislocation bending was investigated. The former SLS, although not lattice matched to GaAs, proved more effective.


Author(s):  
K.M. Hones ◽  
P. Sheldon ◽  
B.G. Yacobi ◽  
A. Mason

There is increasing interest in growing epitaxial GaAs on Si substrates. Such a device structure would allow low-cost substrates to be used for high-efficiency cascade- junction solar cells. However, high-defect densities may result from the large lattice mismatch (∼4%) between the GaAs epilayer and the silicon substrate. These defects can act as nonradiative recombination centers that can degrade the optical and electrical properties of the epitaxially grown GaAs. For this reason, it is important to optimize epilayer growth conditions in order to minimize resulting dislocation densities. The purpose of this paper is to provide an indication of the quality of the epitaxially grown GaAs layers by using transmission electron microscopy (TEM) to examine dislocation type and density as a function of various growth conditions. In this study an intermediate Ge layer was used to avoid nucleation difficulties observed for GaAs growth directly on Si substrates. GaAs/Ge epilayers were grown by molecular beam epitaxy (MBE) on Si substrates in a manner similar to that described previously.


1976 ◽  
Vol 37 (C6) ◽  
pp. C6-893-C6-896 ◽  
Author(s):  
G. WEYER ◽  
G. GREBE ◽  
A. KETTSCHAU ◽  
B. I. DEUTCH ◽  
A. NYLANDSTED LARSEN ◽  
...  

1991 ◽  
Vol 59 (7) ◽  
pp. 811-813 ◽  
Author(s):  
E. A. Fitzgerald ◽  
Y.‐H. Xie ◽  
M. L. Green ◽  
D. Brasen ◽  
A. R. Kortan ◽  
...  

2011 ◽  
Vol 112 (4) ◽  
pp. 625-636 ◽  
Author(s):  
M. M. Otrokov ◽  
V. V. Tugushev ◽  
A. Ernst ◽  
S. A. Ostanin ◽  
V. M. Kuznetsov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document