Characterization of Traps in Crystalline Silicon on Glass Film Using Deep-Level Transient Spectroscopy

2011 ◽  
Vol 178-179 ◽  
pp. 100-105
Author(s):  
Teimuraz Mchedlidze ◽  
J. Hendrik Zollondz ◽  
Martin Kittler

Thin crystalline silicon films on glass substrate, fabricated using solid phase crystallization for application in thin-film solar cells, were investigated by deep level transient spectroscopy (DLTS). The analyses of the DLTS spectra obtained during temperature scans revealed presence of carrier traps related to dislocations in silicon. Other carrier traps of yet unknown nature were detected as well. Variations of electrical activity of the traps were achieved applying variations in the process of the film formation. These changes were also detected during DLTS measurements, suggesting a possibility for applying of DLTS for the investigation and characterization of the thin-film Si material on glass.

2008 ◽  
Vol 600-603 ◽  
pp. 1297-1300 ◽  
Author(s):  
Yutaka Tokuda ◽  
Youichi Matsuoka ◽  
Hiroyuki Ueda ◽  
Osamu Ishiguro ◽  
Narumasa Soejima ◽  
...  

Minority- and majority-carrier traps were studied in GaN pn junctions grown homoepitaxially by MOCVD on n+ GaN substrates. Two majority-carrier traps (MA1,MA2) and three minority-carrier traps (MI1, MI2, MI3) were detected by deep-level transient spectroscopy. MA1 and MA2 are electron traps commonly observed in n GaN on n+ GaN and sapphire substrates. No dislocation-related traps were observed in n GaN on n+ GaN. Among five traps in GaN pn on GaN, MI3 is the main trap with the concentration of 2.5x1015 cm-3.


2001 ◽  
Vol 89 (2) ◽  
pp. 1172-1174 ◽  
Author(s):  
V. V. Ilchenko ◽  
S. D. Lin ◽  
C. P. Lee ◽  
O. V. Tretyak

Sign in / Sign up

Export Citation Format

Share Document