Spin Hall Effect Induced by Sound

2012 ◽  
Vol 190 ◽  
pp. 117-120
Author(s):  
I.I. Lyapilin

Transport of electronic spins in low-dimensional and nanoscale systems is the subject of thenovel and quickly developing eld of spintronics. The possibility of coherent spin manipulationrepresents an ultimate goal of this eld. Typically, spin transport is strongly aected by couplingof spin and orbital degrees of freedom. The inuence of the spin orbit interaction is twofold.The momentum relaxation due to the scattering of carriers, inevitably leads to spin relaxationand destroys the spin coherence. On the other hand, the controlled orbital motion of carrierscan result in a coherent motion of their spins. Thus, the spin orbit coupling is envisaged as apossible tool for spin controling in electronic devices. In particular, it is possible to generatespin polarization and spin currents by applying electric eld, the phenomenon known as thespin-Hall eect (SHE) [1- 3]. The eect is manifested in the form of a spin current directedperpendicular to the normal current, which takes place in an electric eld.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Woo Seung Ham ◽  
Abdul-Muizz Pradipto ◽  
Kay Yakushiji ◽  
Kwangsu Kim ◽  
Sonny H. Rhim ◽  
...  

AbstractDzyaloshinskii–Moriya interaction (DMI) is considered as one of the most important energies for specific chiral textures such as magnetic skyrmions. The keys of generating DMI are the absence of structural inversion symmetry and exchange energy with spin–orbit coupling. Therefore, a vast majority of research activities about DMI are mainly limited to heavy metal/ferromagnet bilayer systems, only focusing on their interfaces. Here, we report an asymmetric band formation in a superlattices (SL) which arises from inversion symmetry breaking in stacking order of atomic layers, implying the role of bulk-like contribution. Such bulk DMI is more than 300% larger than simple sum of interfacial contribution. Moreover, the asymmetric band is largely affected by strong spin–orbit coupling, showing crucial role of a heavy metal even in the non-interfacial origin of DMI. Our work provides more degrees of freedom to design chiral magnets for spintronics applications.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Emilian M. Nica ◽  
Qimiao Si

AbstractRecent experiments in multiband Fe-based and heavy-fermion superconductors have challenged the long-held dichotomy between simple s- and d-wave spin-singlet pairing states. Here, we advance several time-reversal-invariant irreducible pairings that go beyond the standard singlet functions through a matrix structure in the band/orbital space, and elucidate their naturalness in multiband systems. We consider the sτ3 multiorbital superconducting state for Fe-chalcogenide superconductors. This state, corresponding to a d + d intra- and inter-band pairing, is shown to contrast with the more familiar d + id state in a way analogous to how the B- triplet pairing phase of 3He superfluid differs from its A- phase counterpart. In addition, we construct an analog of the sτ3 pairing for the heavy-fermion superconductor CeCu2Si2, using degrees-of-freedom that incorporate spin-orbit coupling. Our results lead to the proposition that d-wave superconductors in correlated multiband systems will generically have a fully-gapped Fermi surface when they are examined at sufficiently low energies.


2006 ◽  
Vol 23 (11) ◽  
pp. 3065-3068 ◽  
Author(s):  
Wang Yi ◽  
Sheng Wei ◽  
Zhou Guang-Hui

2010 ◽  
Vol 24 (07) ◽  
pp. 649-656
Author(s):  
XI FU ◽  
GUANGHUI ZHOU

We investigate theoretically the spin current and spin current induced electric field in a weak Rashba spin-orbit coupling quantum wire (QW) using a definition for spin current by means of scattering matrix. It is found that there exists two non-zero linear spin current density elements which have oscillation peaks at the center of QW and their strengths can be changed by the number of propagation modes and Rashba constant, respectively. Moreover, the spin current induced electric field has also been calculated and its strength is measurable with present technology with which can be used to detect spin current.


Sign in / Sign up

Export Citation Format

Share Document