SPIN CURRENT INDUCED ELECTRIC FIELD IN A RASHBA QUANTUM WIRE

2010 ◽  
Vol 24 (07) ◽  
pp. 649-656
Author(s):  
XI FU ◽  
GUANGHUI ZHOU

We investigate theoretically the spin current and spin current induced electric field in a weak Rashba spin-orbit coupling quantum wire (QW) using a definition for spin current by means of scattering matrix. It is found that there exists two non-zero linear spin current density elements which have oscillation peaks at the center of QW and their strengths can be changed by the number of propagation modes and Rashba constant, respectively. Moreover, the spin current induced electric field has also been calculated and its strength is measurable with present technology with which can be used to detect spin current.

2006 ◽  
Vol 23 (11) ◽  
pp. 3065-3068 ◽  
Author(s):  
Wang Yi ◽  
Sheng Wei ◽  
Zhou Guang-Hui

2011 ◽  
Vol 20 (7) ◽  
pp. 077302
Author(s):  
Zhan-Feng Song ◽  
Ya-Dong Wang ◽  
Hui-Bin Shao ◽  
Zhi-Gang Sun

2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Xi Fu ◽  
Wenhu Liao ◽  
Guanghui Zhou

We investigate theoretically the spin accumulation in a Rashba spin-orbit coupling quantum wire. Using the scattering matrix approach within the effective free-electron approximation, we have demonstrated the three components of spin polarization. It is found that by a few numerical examples, the two peaks for the out-of-plane spin accumulation〈Sz〉shift to the edges of quantum wire with the increase of propagation modes. The period of intrinsic oscillations〈Sx/y〉inversely proportions to the Rashba SOC strength. This effect may be used to differentiate the intrinsic spin accumulation from the extrinsic one.


2011 ◽  
Vol 25 (07) ◽  
pp. 487-496
Author(s):  
XI FU ◽  
ZESHUN CHEN ◽  
FENG ZHONG ◽  
YONGHONG KONG

We investigate theoretically the electron transport properties of a quantum wire (QW) non-adiabatically connected to two normal leads with weak Dresselhaus spin-orbit coupling (DSOC). Using the scattering matrix method and Landauer–Büttiker formula within the effective free-electron approximation, we have calculated the spin-dependent conductances G↑/↓ and spin polarization Pz of a hard-wall potential confined QW. It is demonstrated that regardless of the existence of DSOC G↑/↓ and Pz present oscillation structures near the subband edges of QW, and the number of quantized conductance plateaus is determined by the number of propagation modes in two leads. Moreover, the DSOC induces splitting of spin-up and spin-down conductance plateaus as well as the existence of spin polarization (Pz ≠ 0), and the enhancement of Dresselhaus strength destroys the conductance plateaus for the wide QW case. The above results indicate that the spin-dependent conductances and Pz are strongly dependent on the Dresselhaus strength which is the physical basis for spin transistor.


Sign in / Sign up

Export Citation Format

Share Document