Influence of Heat Treatment on Stress-Corrosion Resistance of EN AW-AIZn5Mg1,5CuZr Alloy

2013 ◽  
Vol 199 ◽  
pp. 424-429
Author(s):  
Lesław Kyzioł ◽  
Kazimierz Czapczyk

The aim of this study is to determine mechanical properties and stress-corrosion resistance of EN AW-AIZn5Mg1,5CuZr alloy from the aspect of microstructure changes depending on the applied heat treatment. Stress corrosion is caused by the effect of corrosion environment parallel to mechanical stress. It occurs when cracks appear in the metal which is exposed to a corrosion environment and static stretching stresses. The effect of the corrosion environment and stresses on the metal surface cause cracks which are placed perpendicularly to the direction of stretching stresses and may be intercrystalline, intracrystalline or mixed. Stress cracking observations show that distinct cracks are often preceded by the incubation phase. The intensity of microcracks in this phase can be determined by examining changes in mechanical properties caused by changes in alloy structures after various time intervals of the stress-corrosion experiment. This study outlines changes in mechanical properties and resistance of the aluminium alloy in question depending on the heat treatment parameters. Changes in mechanical and corrosion properties are reflected in the structural changes of EN AW-AIZn5Mg1,5CuZr alloy. In order to enhance stress-corrosion resistance and obtain good mechanical properties in Al-Zn-Mg alloys (Zn+Mg>5%), a special heat treatment with cooling with a stop is used. This publication shows suitable heat treatment parameters which guarantee good mechanical properties and high stress-corrosion resistance.

2013 ◽  
Vol 20 (4) ◽  
pp. 39-44
Author(s):  
Lesław Kyzioł

ABSTRACT The effect of heat treatment of the plastically worked 7000 series Al-Zn-Mg aluminium alloy system on its stress-corrosion resistance is examined. For the same chemical constitution, the effect of heat treatment on mechanical and corrosion properties of Al-Zn-Mg alloys systems is remarkable. It was proved that a parameter having significant effect on corrosion properties of the alloy is the rate of alloy cooling after heat treatment. This conclusion is confirmed by observation of structural forms which fully reflect mechanical and corrosion properties of the alloy.


1986 ◽  
Author(s):  
T. Nakazawa ◽  
T. Suzuki ◽  
T. Sakamoto ◽  
Y. Yazaki ◽  
Y. Tsukano

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1930
Author(s):  
Maxim Bassis ◽  
Abram Kotliar ◽  
Rony Koltiar ◽  
Tomer Ron ◽  
Avi Leon ◽  
...  

The wire laser additive manufacturing (WLAM) process is considered a direct-energy deposition method that aims at addressing the need to produce large components having relatively simple geometrics at an affordable cost. This additive manufacturing (AM) process uses wires as raw materials instead of powders and is capable of reaching a deposition rate of up to 3 kg/h, compared with only 0.1 kg/h with common powder bed fusion (PBF) processes. Despite the attractiveness of the WLAM process, there has been only limited research on this technique. In particular, the stress corrosion properties of components produced by this technology have not been the subject of much study. The current study aims at evaluating the effect of a slow strain rate on the stress corrosion resistance of 316L stainless steel produced by the WLAM process in comparison with its counterpart: AISI 316L alloy. Microstructure examination was carried out using optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction analysis, while the mechanical properties were evaluated using tensile strength and hardness measurements. The general corrosion resistance was examined by potentiodynamic polarization and impedance spectroscopy analysis, while the stress corrosion performance was assessed by slow strain rate testing (SSRT) in a 3.5% NaCl solution at ambient temperature. The attained results highlight the inferior mechanical properties, corrosion resistance and stress corrosion performance, especially at a slow strain rate, of the WLAM samples compared with the regular AISI 316L alloy. The differences between the WLAM alloy and AISI 316L alloy were mainly attributed to their dissimilarities in terms of phase compositions, structural morphology and inherent defects.


2014 ◽  
Vol 794-796 ◽  
pp. 241-246 ◽  
Author(s):  
Dmitry K. Ryabov ◽  
Nikolay I. Kolobnev ◽  
Sergei V. Samohvalov

Al-Zn-Mg alloys are widely used construct material for wide range of application including automotive industry, building, and aviation. Scandium is rare earth metal, which modifies structure of semi-products and can lead to increasing of tensile and yield strength because of Al3Sc intermetallics of nanoscale size. This paper describes results of influence of small addition of scandium (0,08 wt. %) on mechanical and corrosion properties of cold-rolled sheets of 1913 alloy. 1913 is Russian medium strength corrosion resistant weldable Al-Zn-Mg alloy with addition of Cu for improvement of stress corrosion resistance and Mn with Zr for structure improvement. It is shown that addition of Sc transforms kinetics of artificial aging and accelerates decomposition of solid solution, besides tensile strength increases up to 50 MPa in artificially aged tempers. Changes in microstructure and quench sensitivity are described; results of intergranural corrosion, exfoliation and stress corrosion tests are introduced after different heat treatment including peak strength aging and overaging tempers.


Sign in / Sign up

Export Citation Format

Share Document