Properties of Austenite in Maraging Steel

2018 ◽  
Vol 284 ◽  
pp. 386-391
Author(s):  
A.A. Sukhikh ◽  
V.B. Dementiev ◽  
T.M. Makhneva

The reasons of high strength of residual and reverted austenite in the maraging steel H18K9M5T are discussed. It has been shown that the high value of the residual austenite yield strength is due to the dispersity of its crystals and phase hardening; a significant increase in the strength properties of the reverted austenite is caused by the presence of intermetallide particles with high dispersity in it.

Alloy Digest ◽  
2018 ◽  
Vol 67 (12) ◽  

Abstract MHZ 420 (mininum yield strength of 420 MPa) is one of a series of microalloyed cold forming steels. The high-strength properties result from precipitation hardening thanks to finely-dispersed carbonitrides and a fine-grained microstructure. Even very small amounts of the elements titanium and/or niobium in the region of 0.01% result in a significant increase in the yield point and tensile strength. This datasheet provides information on composition and tensile properties as well as fatigue. It also includes information on forming and joining. Filing Code: SA-831. Producer or source: ThyssenKrupp Steel Europe AG.


Alloy Digest ◽  
2018 ◽  
Vol 67 (11) ◽  

Abstract MHZ 380 (mininum yield strength of 380 MPa) is one of a series of microalloyed cold forming steels. The high-strength properties result from precipitation hardening thanks to finely-dispersed carbonitrides and a fine-grained microstructure. Even very small amounts of the elements titanium and/or niobium in the region of 0.01% result in a significant increase in the yield point and tensile strength. This datasheet provides information on composition and tensile properties as well as fatigue. It also includes information on forming and joining. Filing Code: SA-828. Producer or source: ThyssenKrupp Steel Europe AG.


Alloy Digest ◽  
2014 ◽  
Vol 63 (6) ◽  

Abstract Marvac 250 is a clean high-strength maraging steel capable of 1654 MPa (240 ksi) yield strength. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: Fe-163. Producer or source: Latrobe Specialty Steel Company.


Alloy Digest ◽  
2019 ◽  
Vol 68 (1) ◽  

Abstract MHZ 460 (mininum yield strength of 460 MPa) is one of a series of microalloyed cold forming steels. The high-strength properties result from precipitation hardening thanks to finely-dispersed carbonitrides and a fine-grained microstructure. Even very small amounts of the elements titanium and/or niobium in the region of 0.01% result in a significant increase in the yield point and tensile strength. This datasheet provides information on composition and tensile properties as well as fatigue. It also includes information on forming and joining. Filing Code: SA-835. Producer or source: ThyssenKrupp Steel Europe AG.


Alloy Digest ◽  
2019 ◽  
Vol 68 (2) ◽  

Abstract MHZ 500 (mininum yield strength of 500 MPa) is one of a series of microalloyed cold forming steels. The high-strength properties result from precipitation hardening thanks to finely-dispersed carbonitrides and a fine-grained microstructure. Even very small amounts of the elements titanium and/or niobium in the region of 0.01% result in a significant increase in the yield point and tensile strength. This datasheet provides information on composition and tensile properties as well as fatigue. It also includes information on forming and joining. Filing Code: SA-837. Producer or source: ThyssenKrupp Steel Europe AG.


Author(s):  
I. Neuman ◽  
S.F. Dirnfeld ◽  
I. Minkoff

Experimental work on the spot welding of Maraging Steels revealed a surprisingly low level of strength - both in the as welded and in aged conditions. This appeared unusual since in the welding of these materials by other welding processes (TIG,MIG) the strength level is almost that of the base material. The maraging steel C250 investigated had the composition: 18wt%Ni, 8wt%Co, 5wt%Mo and additions of Al and Ti. It has a nominal tensile strength of 250 KSI. The heat treated structure of maraging steel is lath martensite the final high strength is reached by aging treatment at 485°C for 3-4 hours. During the aging process precipitation takes place of Ni3Mo and Ni3Ti and an ordered solid solution containing Co is formed.Three types of spot welding cycles were investigated: multi-pulse current cycle, bi-pulse cycle and single pulsle cycle. TIG welded samples were also tested for comparison.The microstructure investigations were carried out by SEM and EDS as well as by fractography. For multicycle spot welded maraging C250 (without aging), the dendrites start from the fusion line towards the nugget centre with an epitaxial growth region of various widths, as seen in Figure 1.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 653-664
Author(s):  
IGNACIO DE SAN PIO ◽  
KLAS G. JOHANSSON ◽  
PAUL KROCHAK

Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and bentonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.


Alloy Digest ◽  
2011 ◽  
Vol 60 (10) ◽  

Abstract Dogal 300 LAD, 340 LAD, 380 LAD, 420 LAD, 460 LAD and 500 LAD are high-strength low alloyed steels intended for pressing. The designation in the name is the guaranteed minimum yield strength. Dogal steels can be zinc coated. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on surface qualities as well as forming, heat treating, joining, and surface treatment. Filing Code: CS-167. Producer or source: SSAB Swedish Steel Inc..


Alloy Digest ◽  
2012 ◽  
Vol 61 (2) ◽  

Abstract RUUKKI RAEX 300 (typical yield strength 900 MPa) is part of the Raex family of high-strength and wear-resistant steels with favorable hardness and impact toughness to extend life and decrease wear in structural components. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on wear resistance as well as forming, machining, and joining. Filing Code: SA-643. Producer or source: Rautaruukki Corporation.


Alloy Digest ◽  
2017 ◽  
Vol 66 (2) ◽  

Abstract Strenx 700 is a high-strength structural steel with a minimum yield strength of 650–700 MPa (94–102 ksi) depending on thickness. Strenx 700 meets the requirements of EN 10 025-6 for the S690 grade and thicknesses. Typical applications include demanding load-bearing structures. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on surface qualities as well as forming, machining, and joining. Filing Code: SA-779. Producer or source: SSAB Swedish Steel Inc..


Sign in / Sign up

Export Citation Format

Share Document