Influence of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melted TiAl6V4 Alloy

2018 ◽  
Vol 284 ◽  
pp. 615-620 ◽  
Author(s):  
R.M. Baitimerov ◽  
P.A. Lykov ◽  
L.V. Radionova

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.

2017 ◽  
Vol 44 (9) ◽  
pp. 0902001
Author(s):  
肖振楠 Xiao Zhennan ◽  
刘婷婷 Liu Tingting ◽  
廖文和 Liao Wenhe ◽  
张长东 Zhang Changdong ◽  
杨涛 Yang Tao

2019 ◽  
Vol 5 ◽  
pp. 23 ◽  
Author(s):  
Anne-Helene Puichaud ◽  
Camille Flament ◽  
Aziz Chniouel ◽  
Fernando Lomello ◽  
Elodie Rouesne ◽  
...  

Additive manufacturing (AM) is rapidly expanding in many industrial applications because of the versatile possibilities of fast and complex fabrication of added value products. This manufacturing process would significantly reduce manufacturing time and development cost for nuclear components. However, the process leads to materials with complex microstructures, and their structural stability for nuclear application is still uncertain. This study focuses on 316L stainless steel fabricated by selective laser melting (SLM) in the context of nuclear application, and compares with a cold-rolled solution annealed 316L sample. The effect of heat treatment (HT) and hot isostatic pressing (HIP) on the microstructure and mechanical properties is discussed. It was found that after HT, the material microstructure remains mostly unchanged, while the HIP treatment removes the materials porosity, and partially re-crystallises the microstructure. Finally, the tensile tests showed excellent results, satisfying RCC-MR code requirements for all AM materials.


Sign in / Sign up

Export Citation Format

Share Document