Grain Boundary Diffusion and Solid State Reactions

1997 ◽  
Vol 56 ◽  
pp. 37-50 ◽  
Author(s):  
Patrick Gas ◽  
Jean Bernardini
2022 ◽  
Vol 207 ◽  
pp. 114302
Author(s):  
Seungjin Nam ◽  
Sang Jun Kim ◽  
Moon J. Kim ◽  
Manuel Quevedo-Lopez ◽  
Jun Yeon Hwang ◽  
...  

1992 ◽  
Vol 7 (6) ◽  
pp. 1377-1386 ◽  
Author(s):  
Rita Roy ◽  
S.K. Sen ◽  
Suchitra Sen

The kinetics of the formation of intermetallics in the Cu–In bimetallic thin film couple have been studied from room temperature to 432 K by measuring the evolution of composite and contact electrical resistance with time and temperature. The resistivity measurements have been supplemented by x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Copper reacts with indium even at room temperature to form CuIn intermetallic and assuming a model of defect assisted diffusion into the grains, the activation energy averaged over five different samples is found to be 0.40 eV. The grain boundary diffusion is found to occur with an average activation energy of 0.55 eV. XRD confirms the growth of CuIn intermetallic and on annealing at higher temperature, for copper-rich films copper further reacts with CuIn to form Cu9In4. Further evidences of solid state reactions and grain boundary diffusion through Cu grain boundaries have been obtained from SEM study. TEM indicates the growth of the grain size on annealing and confirms the presence of the CuIn phase.


2010 ◽  
Vol 297-301 ◽  
pp. 1267-1283 ◽  
Author(s):  
Boris S. Bokstein

Evidence for solid-state diffusion (the second half of the 19th century). The first measurements of solid state diffusion (W. Roberts-Austen, 1896–1922). The first tracer experiments to determine the solid-state diffusion (G. von Hevesy, 1913–1923). The first evidence of accelerated diffusion in polycrystalline materials (1924–1935). Autoradiographic studies of grain boundary diffusion (50s of 20th century). The first quantitative experimental and theoretical studies of the “short circuiting” diffusion (beginning from 1949, D. Turnbull and R. Hoffman – General Electric Research Lab.): radiotracer serial sectioning method, the Fisher model (1951) for grain boundary diffusion, exact solutions and developments of the Fisher model (1954–1963). The progress in the experimental methods for determination of grain boundary diffusion data and results of measurements for different metallic systems (up to date). The measurements of grain boundary diffusion parameters in the B and C regimes. Grain boundary diffusion and grain boundary segregation. Nonlinear segregation effects. Structural effects of grain boundary diffusion. Diffusion in bicrystals. Diffusion in nanocrystals. Computer simulation of grain boundary diffusion. Mechanisms of grain boundary diffusion.


2014 ◽  
Vol 320 ◽  
pp. 627-633 ◽  
Author(s):  
S.S. Shenouda ◽  
G.A. Langer ◽  
G.L. Katona ◽  
L. Daróczi ◽  
A. Csik ◽  
...  

1990 ◽  
Vol 51 (C1) ◽  
pp. C1-691-C1-696 ◽  
Author(s):  
K. VIEREGGE ◽  
R. WILLECKE ◽  
Chr. HERZIG

2005 ◽  
Vol 96 (10) ◽  
pp. 1187-1192 ◽  
Author(s):  
Raymond J. Kremer ◽  
Mysore A. Dayananda ◽  
Alexander H. King

Sign in / Sign up

Export Citation Format

Share Document