The formation of intermetallics in Cu/In thin films

1992 ◽  
Vol 7 (6) ◽  
pp. 1377-1386 ◽  
Author(s):  
Rita Roy ◽  
S.K. Sen ◽  
Suchitra Sen

The kinetics of the formation of intermetallics in the Cu–In bimetallic thin film couple have been studied from room temperature to 432 K by measuring the evolution of composite and contact electrical resistance with time and temperature. The resistivity measurements have been supplemented by x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Copper reacts with indium even at room temperature to form CuIn intermetallic and assuming a model of defect assisted diffusion into the grains, the activation energy averaged over five different samples is found to be 0.40 eV. The grain boundary diffusion is found to occur with an average activation energy of 0.55 eV. XRD confirms the growth of CuIn intermetallic and on annealing at higher temperature, for copper-rich films copper further reacts with CuIn to form Cu9In4. Further evidences of solid state reactions and grain boundary diffusion through Cu grain boundaries have been obtained from SEM study. TEM indicates the growth of the grain size on annealing and confirms the presence of the CuIn phase.

2005 ◽  
Vol 96 (10) ◽  
pp. 1187-1192 ◽  
Author(s):  
Raymond J. Kremer ◽  
Mysore A. Dayananda ◽  
Alexander H. King

1993 ◽  
Vol 313 ◽  
Author(s):  
John G. Holl-Pellerin ◽  
S.G.H. Anderson ◽  
P.S. Ho ◽  
K.R. Coffey ◽  
J.K. Howard ◽  
...  

ABSTRACTX-ray photoelectron spectroscopy (XPS) has been used to investigate grain boundary diffusion of Cu and Cr through 1000 Å thick Co films in the temperature range of 325°C to 400°C. Grain boundary diffusivities were determined by modeling the accumulation of Cu or Cr on Co surfaces as a function of time at fixed annealing temperature. The grain boundary diffusivity of Cu through Co is characterized by a diffusion coefficient, D0gb, of 2 × 104 cm2/sec and an activation energy, Ea,gb, of 2.4 eV. Similarly, Cr grain boundary diffusion through Co thin films occurs with a diffusion coefficient, Do,gb, of 6 × 10-2cm2/sec and an activation energy, Ea,gb of 1.8 eV. The Co film microstructure has been investigated before and after annealing by x-ray diffraction and transmission electron Microscopy. Extensive grain growth and texturing of the film occurred during annealing for Co deposited on a Cu underlayer. In contrast, the microstructure of Co deposited on a Cr underlayer remained relatively unchanged upon annealing. Magnetometer Measurements have shown that increased in-plane coercivity Hc, reduced remanence squareness S, and reduced coercive squareness S* result from grain boundary diffusion of Cu and Cr into the Co films.


1983 ◽  
Vol 25 ◽  
Author(s):  
E. C. Zingu ◽  
J. W. Mayer

ABSTRACTInterdiffusion in the Si<100>/Pd2Si/Ni and Si<111>/Pd2Si/Ni thin film systems has been investigated using Rutherford backscattering spectrometry. Nickel is found to diffuse along the grain boundaries of polycrystalline Pd2Si upon which it accumulates at the Si<100>Pd2Si interface. The high mobility of Ni compared to that of si suggests that Pd diffuses faster than Si along the Pd2Si grain boundaries. An activation energy of 1.2 eV is determined for Ni grain boundary diffusion in Pd2Si.


2004 ◽  
Vol 852 ◽  
Author(s):  
R.J. Kremer ◽  
M.A. Dayananda ◽  
A.H. King

ABSTRACTDiffusion processes in typical metals are slow at room temperature but there are many applications for which very long-term use is envisaged and stability needs to be assured over a timescale of 10, 000 years, where even slow processes can be important. It is common to perform accelerated tests at higher temperatures and extrapolate the necessary information from the measurements so obtained. We have tested the validity of this type of extrapolation for room-temperature, grain boundary diffusion in the copper-silver system, by measuring low-temperature diffusion profiles in antique samples of Sheffield plate.


2005 ◽  
Vol 237-240 ◽  
pp. 940-945
Author(s):  
Antônio Claret Soares Sabioni ◽  
Anne Marie Huntz ◽  
F. Silva ◽  
François Jomard

Chromia protective layers are used to prevent corrosion by oxidation of many alloys, such as the stainless steels, for instance. To check if chromia is a barrier to the outward diffusion of iron in these alloys, iron diffusion in chromia was studied in both polycrystals and oxide films formed by oxidation of Ni-30Cr alloy in the temperature range 700-1100°C at an oxygen pressure equal to 10-4 atm. An iron film of about 70 nm thick was deposited on the chromia surface, and after the diffusing treatment, the iron depth profiles were established by secondary ion mass spectrometry (SIMS). Using a solution of the Fick’s second law for diffusion from a thick film, effective or bulk diffusion coefficients were determined in a first penetration domain. Then, Le Claire’s and Hart’s models allowed both the bulk diffusion coefficient and the grain boundary diffusion parameter (aDgbd) to be obtained in a second penetration domain. Iron bulk and grain boundary diffusion does not vary significantly according to the nature-microstructure of chromia. The activation energy of grain boundary diffusion is at least equal or even greater than the activation energy of bulk diffusion, probably on account of segregation phenomena. Iron diffusion was compared to cationic self-diffusion and related to the protective character of chromia.


2014 ◽  
Vol 215 ◽  
pp. 144-149 ◽  
Author(s):  
Sergey M. Zharkov ◽  
Roman R. Altunin ◽  
Evgeny T. Moiseenko ◽  
Galina M. Zeer ◽  
Sergey N. Varnakov ◽  
...  

Solid-state reaction processes in Fe/Si multilayer nanofilms have been studied in situ by the methods of transmission electron microscopy and electron diffraction in the process of heating from room temperature up to 900ºС at a heating rate of 8-10ºС/min. The solid-state reaction between the nanolayers of iron and silicon has been established to begin at 350-450ºС increasing with the thickness of the iron layer.


1993 ◽  
Vol 311 ◽  
Author(s):  
X.X. Lin ◽  
J. Desimoni ◽  
H. Bemas ◽  
Z. Liliental-Weber ◽  
J. Washburn

ABSTRACTCubic FeSi2 precipitates were produced in Si (001) wafers by Fe implantation at room temperature, followed by ion beam-induced crystallization at 320°C, and their stability upon thermal annealing was examined by transmission electron microscopy. We found that the cubic phase remains relatively stable for a 650°C anneal, but the precipitates tend to change from an aligned to a twinned orientation with respect to the Si matrix. For higher temperature (800 and 900°C) anneals, most of the precipitates are transformed into β-FeSi2, accompanied by substantial precipitate coarsening. For platelet-shaped precipitates, the coarsening activation energy was determined to be 3.48 eV.


Sign in / Sign up

Export Citation Format

Share Document