Computational Fluid Dynamics Applied to River Boat Hull Optimization

2021 ◽  
Vol 55 (5) ◽  
pp. 94-108
Author(s):  
Harlysson W. S. Maia ◽  
Said Mounsif ◽  
Jassiel V. Hernández-Fontes ◽  
Rodolfo Silva

Abstract This paper extends the work of Maia and Said (“Analysis for Resistance Reduction of an Amazon School Boat through Hull Shape Modification Utilizing a CFD Tool,” 2019), proposing the optimization of a school boat hull using genetic algorithms and computational fluid dynamics (CDF) simulations. The study examines a school boat used for the transportation of children to schools in riverine communities of the Brazilian Amazon. The optimization was focused on reducing the hydrodynamic hull resistance by modifying the hull lines, using the NSGA-II (non-dominated sorting genetic algorithm II) algorithm in the CAD (computer aided design) CAESES environment. The objective of the study was to reduce the resistance coefficients: C wp (wave profile) and C wp trans (transverse wave profile), thus reducing the total resistance coefficient (C t) and the generated wave amplitude. Pressure distributions and flow lines were then evaluated to obtain an optimal modified hull with reduced wave emission (lower wave resistance) and, consequently, lower forward resistance. The proposed methodology resulted in a maximum reduction of 5% in the total resistance coefficient C t and in the identification of a trend of geometric variation of the hull for investigation in further studies.

Author(s):  
Xu Zhang ◽  
David J. J. Toal ◽  
Neil W. Bressloff ◽  
Andy J. Keane ◽  
Frederic Witham ◽  
...  

The following paper presents an overview of the Prometheus design system and its applications to gas turbine combustor design. Unlike a traditional “optimizer-centric” method, Prometheus aims to reduce both the level of workflow complexity and rework by taking a more “geometry-centric” approach to design optimization by shifting the control of script generation away from the optimization program to the computer aided design (CAD) package. Prometheus therefore enables significant geometry changes to be automatically reflected in all subsequent scripts necessary for the analysis of a combustor. Prometheus’ current capabilities include automatic fluid volume generation and aero-thermal and thermo-acoustic network generation as well as automatic mesh and computational fluid dynamics (CFD) script generation.


2021 ◽  
Vol 27 (2) ◽  
pp. 139-148
Author(s):  
Yousef Abu-Zidan ◽  
Kate Nguyen ◽  
Priyan Mendis ◽  
Sujeeva Setunge ◽  
Hojjat Adeli

The novel coronavirus (SARS-CoV-2) has spread at an unprecedented rate, resulting in a global pandemic (COVID-19) that has strained healthcare systems and claimed many lives. Front-line healthcare workers are among the most at risk of contracting and spreading the virus due to close contact with infected patients and settings of high viral loads. To provide these workers with an extra layer of protection, the authors propose a low-cost, prefabricated, and portable sanitising chamber that sprays individuals with sanitising fluid to disinfect clothing and external surfaces on their person. The study discusses computer-aided design of the chamber to improve uniformity of sanitiser deposition and reduce discomfort due to excessive moisture. Advanced computational fluid dynamics is used to simulate the dispersion and deposition of spray particle, and the resulting wetting pattern on the treated person is used to optimise the chamber design.


Author(s):  
Avinash T

Abstract: The objective of the present study is to design and analyze semi-tangential ogive bullets using simulatation software such as Computer-aided design & Computational Fluid Dynamics (CFD). It is observed that been a quite steady increase in the bullet research design in the past few decades. The nose section of ballistic bullet is the most important part of the design process. Hence design optimizations are achieved by adjusting the bullet's form to improve precision and stability by reducing its drag force. CFD is the study used to verify the findings. Since provides most accurate results. It is observed that present study optimizes the behavior of the at M= 2.5. This present work shows the flow of air around the bullet surface providing pressure & velocity contours at every segment. The Various parametric studies over bullet model are drag co-efficient, ballistic coefficient and turbulence viscosity are plotted’.


Author(s):  
Lei Li ◽  
Carlos F Lange ◽  
Yongsheng Ma

Computational fluid dynamics has been extensively used for fluid flow simulation and thus guiding the flow control device design. However, computational fluid dynamics simulation requires explicit geometry input and complicated solver setup, which is a barrier in case of the cyclic computer-aided design/computational fluid dynamics integrated design process. Tedious human interventions are inevitable to make up the gap. To fix this issue, this work proposed a theoretical framework where the computational fluid dynamics solver setup can be intelligently assisted by the simulation intent capture. Two feature concepts, the fluid physics feature and the dynamic physics feature, have been defined to support the simulation intent capture. A prototype has been developed for the computer-aided design/computational fluid dynamics integrated design implementation without the need of human intervention, where the design intent and computational fluid dynamics simulation intent are associated seamlessly. An outflow control device used in the steam-assisted gravity drainage process is studied using this prototype, and the target performance of the device is effectively optimized.


Author(s):  
Patel Mann B

Abstract: Generative Fluid in Fusion 360 is the recently launched cutting edge technology which is revolutionary for those companies which produces parts and components working on fluid. They always thrive for weight reduction and minimum pressure drop of their components along with no sacrifice at their performance. This can now be done by this new technology at their specified rate. But the cost of running one simulation is equitable for design which it gives to us. Keyword: 1. Additive Manufacturing, 2. Computational fluid dynamics, 3. Computer aided design, 4. Generative Design, 5. Topology optimization 6. fluid mechanics


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Mehdi Esmaeilpour ◽  
J. Ezequiel Martin ◽  
Pablo M. Carrica

The dead water problem, in which under certain conditions a vessel advancing in a stratified fluid experiences a considerable increase in resistance respect to the equivalent case without stratification, was studied using computational fluid dynamics (CFD). The advance of a vessel in presence of a density interface (pycnocline) results in the generation of an internal wave that in the most adverse conditions can increase the total resistance coefficient by almost an order of magnitude. This paper analyses the effects of stratification on total and friction resistance, the near field wake, internal and free surface waves, and resistance dynamics. Some of these effects are reported for the first time, as limitations of previous efforts using potential flow are overcome by the use of a viscous, free surface CFD solver. A range of densimetric Froude numbers from subcritical to supercritical are evaluated changing both the ship speed and pycnocline depth, using as platform the research vessel athena. It was found that the presence of the internal wave causes a favorable pressure gradient, acceleration of the flow in the downstream of the hull, resulting in thinning of the boundary layer and increases of the friction resistance coefficient of up to 30%. The total resistance presents an unstable region that results in a hysteretic behavior, though the characteristic time to establish the speed–resistance curve, dominated by the formation of the internal waves, is very long and unlikely to cause problems in modern ship speed controllers.


Sign in / Sign up

Export Citation Format

Share Document