DNA barcodes for species delimitation in Chironomidae (Diptera): a case study on the genusLabrundinia

2013 ◽  
Vol 145 (6) ◽  
pp. 589-602 ◽  
Author(s):  
Fabio Laurindo da Silva ◽  
Torbjørn Ekrem ◽  
Alaide Aparecida Fonseca-Gessner

AbstractIn this study, we analysed the applicability of DNA barcodes for delimitation of 79 specimens of 13 species of nonbiting midges in the subfamily Tanypodinae (Diptera: Chironomidae) from São Paulo State, Brazil. Our results support DNA barcoding as an excellent tool for species identification and for solving taxonomic conflicts in genusLabrundinia.Molecular analysis of cytochrome c oxidase subunit I (COI) gene sequences yielded taxon identification trees, supporting 13 cohesive species clusters, of which three similar groups were subsequently linked to morphological variation at the larval and pupal stage. Additionally, another cluster previously described by means of morphology was linked to molecular markers. We found a distinct barcode gap, and in some species substantial interspecific pairwise divergences (up to 19.3%) were observed, which permitted identification of all analysed species. The results also indicated that barcodes can be used to associate life stages of chironomids since COI was easily amplified and sequenced from different life stages with universal barcode primers.

2013 ◽  
Vol 104 (1) ◽  
pp. 65-78 ◽  
Author(s):  
F.L. Silva ◽  
S. Wiedenbrug

AbstractIn this study, we use DNA barcodes for species delimitation to solve taxonomic conflicts in 86 specimens of 14 species belonging to theCorynoneuragroup (Diptera: Chironomidae: Orthocladiinae), from the Atlantic Forest, Brazil. Molecular analysis of cytochrome c-oxidase subunit I (COI) gene sequences supported 14 cohesive species groups, of which two similar groups were subsequently associated with morphological variation at the pupal stage. Eleven species previously described based on morphological criteria were linked to DNA markers. Furthermore, there is the possibility that there may be cryptic species within theCorynoneuragroup, since one group of species presented internal grouping, although no morphological divergence was observed. Our results support DNA-barcoding as an excellent tool for species delimitation in groups where taxonomy by means of morphology is difficult or even impossible.


ZooKeys ◽  
2020 ◽  
Vol 975 ◽  
pp. 79-86
Author(s):  
Hai-Jun Yu ◽  
Xiao-Long Lin ◽  
Rui-Lei Zhang ◽  
Qian Wang ◽  
Xin-Hua Wang

The utility of COI DNA barcodes in species delimitation is explored as well as life stage associations of five closely related Propsilocerus species: Propsilocerus akamusi (Tokunaga, 1938), Propsilocerus paradoxus (Lundström, 1915), Propsilocerus saetheri Wang, Liu et Paasivirta, 2007, Propsilocerus sinicus Sæther et Wang, 1996, and Propsilocerus taihuensis (Wen, Zhou et Rong, 1994). Results revealed distinctly larger interspecific than intraspecific divergences and indicated a clear “barcode gap”. In total, 42 COI barcode sequences including 16 newly generated DNA barcodes were applied to seven Barcode Index Numbers (BINs). A neighbor-joining (NJ) tree comprises five well-separated clusters representing five morphospecies. Comments on how to distinguish the larvae of P. akamusi and P. taihuensis are provided.


Zootaxa ◽  
2008 ◽  
Vol 1839 (1) ◽  
pp. 1 ◽  
Author(s):  
MANUEL ELÍAS-GUTIÉRREZ ◽  
FERNANDO MARTÍNEZ JERÓNIMO ◽  
NATALIA V. IVANOVA ◽  
MARTHA VALDEZ-MORENO ◽  
PAUL D. N. HEBERT

DNA barcoding, based on sequence diversity in the mitochondrial COI gene, has proven an excellent tool for identifying species in many animal groups. Here, we report the first barcode studies for freshwater zooplankton from Mexico and Guatemala and discuss the taxonomic and biological implications of this work. Our studies examined 61 species of Cladocera and 21 of Copepoda, about 40% of the known fauna in this region. Sequence divergences among conspecific individuals of cladocerans and copepods averaged 0.82% and 0.79%, respectively, while sequence divergences among congeneric taxa were on average 15-20 times as high. Barcodes were successful in discriminating all species in our study, but sequences for Mexican Daphnia exilis overlapped with those of D. spinulata from Argentina. Our barcode data revealed evidence of many species overlooked by current classification systems —for example, based on COI genotypes the Diapahanosoma birgei group appears to include 5 species, while Ceriodaphnia cf. rigaudi, Moina cf. micrura, Mastigodiaptomus albuquerquensis and Mastigodiaptomus reidae all include 2–3 taxa. The barcode results support recent taxonomic revisions, such as recognition of the genus Leberis, and the presence of several species in the D. birgei and Chydorus sphaericus complexes. The present results indicate that DNA barcoding will provide powerful new insights into both the incidence of cryptic species and a better understanding of zooplankton distributions, aiding evaluation of the factors influencing competitive outcomes, and the colonization of aquatic environments.


Zootaxa ◽  
2019 ◽  
Vol 4678 (1) ◽  
pp. 1-75
Author(s):  
JIA HUANG ◽  
LU GONG ◽  
SHUN-CHERN TSAUR ◽  
LIN ZHU ◽  
KEYING AN ◽  
...  

A total of 50 (43 known and seven new) species in the subgenus Phortica (sensu stricto) were surveyed and (re)described from China: P. bicornuta (Chen & Toda, 1997); P. bipartita (Toda & Peng, 1992); P. biprotrusa (Chen & Toda, 1998); P. cardua (Okada, 1977); P. chi (Toda & Sidorenko, 1996); P. conifera (Okada, 1977); P. eparmata (Okada, 1977); P. eugamma (Toda & Peng, 1990); P. excrescentiosa (Toda & Peng, 1990); P. fangae (Máca, 1993); P. flexuosa (Zhang & Gan, 1986); P. foliata (Chen & Toda, 1997); P. gamma (Toda & Peng, 1990); P. gigas (Okada, 1977); P. glabtabula Chen & Gao, 2005; P. hainanensis (Chen & Toda, 1998); P. hongae (Máca, 1993); P. huazhii Cheng & Chen, 2008; P. iota (Toda & Sidorenko, 1996); P. jadete Zhu, Cao & Chen, 2018; P. kappa (Máca, 1977); P. lambda (Toda & Peng, 1990); P. latifoliacea Chen & Watabe, 2008; P. magna (Okada, 1960); P. okadai (Máca, 1977); P. omega (Okada, 1977); P. orientalis (Hendel, 1914); P. pangi Chen & Wen, 2005; P. paramagna (Okada, 1971); P. perforcipata (Máca & Lin, 1993); P. pi (Toda & Peng, 1990); P. protrusa (Zhang & Shi, 1997); P. pseudopi (Toda & Peng, 1990); P. pseudotau (Toda & Peng, 1990); P. psi (Zhang & Gan, 1986); P. rhagolobos Chen & Gao, 2008; P. saeta (Zhang & Gan, 1986); P. setitabula Chen & Gao, 2005; P. subradiata (Okada, 1977); P. tau (Toda & Peng, 1990); P. uncinata Chen & Gao, 2005; P. unipetala Chen & Wen, 2005; P. allomega Gong & Chen, sp. nov.; P. archikappa Gong & Chen, sp. nov.; P. dianzangensis Gong & Chen, sp. nov.; P. imbacilia Gong & Chen, sp. nov.; P. liukuni Gong & Chen, sp. nov.; P. tibeta Gong & Chen, sp. nov.; and P. xianfui Gong & Chen, sp. nov. In addition, seven new synonyms were recognized: P. acongruens (Zhang & Shi, 1997), syn. nov.; P. antillaria (Chen & Toda, 1997), syn. nov.; P. kukuanensis Máca, 2003, syn. nov.; P. linae (Máca & Chen, 1993), syn. nov.; P. shillongensis (Singh & Gupta, 1979), syn. nov.; P. takadai (Okada, 1977), syn. nov.; and P. watanabei (Máca & Lin, 1993), syn. nov. A key to all Asian species (except for the eparmata species complex) of this subgenus was provided. All currently available DNA barcode (partial mitochondrial cytochrome c oxidase subunit I (COI) gene) sequences of this subgenus (217 sequences of 54 species) are employed in a molecular analysis using different species delimitation methods. The results indicate that approximately 68.5% (37 of 54 spp.) of Phortica (s. str.) species could be clearly distinguished from closely related morphospecies or cryptic species. 


2011 ◽  
Vol 25 (4) ◽  
pp. 322 ◽  
Author(s):  
Nicolas Puillandre ◽  
Enrique Macpherson ◽  
Josie Lambourdière ◽  
Corinne Cruaud ◽  
Marie-Catherine Boisselier-Dubayle ◽  
...  

The primary purpose of DNA-barcoding projects is to generate an efficient expertise and identification tool. This is an important challenge to the taxonomy of the 21st century, as the demand increases and the expert capacity does not. However, identifying specimens using DNA-barcodes requires a preliminary analysis to relate molecular clusters to available scientific names. Through a case study of the genus Eumunida (Decapoda : Eumunididae), we illustrate how naming molecule-based units, and thus providing an accurate DNA-based identification tool, is facilitated by sequencing type specimens. Using both morphological and unlinked molecular markers (COI and 28S genes), we analysed 230 specimens from 12 geographic areas, covering two-thirds of the known diversity of the genus, including type specimens of 13 species. Most hypotheses of species delimitation are validated, as they correspond to molecular units linked to only one taxonomic name (and vice versa). However, a putative cryptic species is also revealed and three entities previously named as distinct species may in fact belong to a single one, and thus need to be synonymised. Our analyses, which integrate the current naming rules, enhance the α-taxonomy of the genus and provide an effective identification tool based on DNA-barcodes. They illustrate the ability of DNA-barcodes, especially when type specimens are included, to pinpoint where a taxonomic revision is needed.


Diversity ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 173 ◽  
Author(s):  
Stur ◽  
da Silva ◽  
Ekrem

Short, standardized gene fragments for species identification (DNA barcodes) have proven effective in delineating closely-related insect species, and can be critical characters to include in taxonomic studies. This is also the case for the species-rich and widely distributed fly family Chironomidae (non-biting midges). Inspired by observed genetic differences in partial COI gene sequences between North American and European populations of the chironomid Ablabesmyia monilis sensu lato, we investigated whether or not the morphology of male and female adults supported the distinction of more than one species. Our results support that the junior synonym Ablabesmyia americana is a valid species separate from A. monilis, and that A. monilis sensu stricto is distributed both in the Palearctic region and in North America. We provide re-descriptions of all of the major life stages of A. americana and of the adult female of A. monilis.


2020 ◽  
Author(s):  
Andrea Galimberti ◽  
Giacomo Assandri ◽  
Davide Maggioni ◽  
Fausto Ramazzotti ◽  
Daniele Baroni ◽  
...  

AbstractThe Odonata are considered among the most endangered freshwater faunal taxa. Their DNA-based monitoring relies on validated reference datasets that are often lacking or do not cover important biogeographical centres of diversification. This study presents the results of a DNA barcoding campaign on Odonata, based on the standard 658 bp 5’ end region of the mitochondrial COI gene, involving the collection of 812 specimens (409 of which barcoded) from peninsular Italy and its main islands (328 localities), belonging to all the 88 species (31 Zygoptera and 57 Anisoptera) known from the country. Additional BOLD and GenBank data from Holarctic samples expanded the dataset to 1294 DNA barcodes. A multi-approach species delimitation analysis involving two distance (OT and ABGD) and four tree-based (PTP, MPTP, GMYC, bGMYC) methods were used to explore these data. Of the 88 investigated morphospecies, 75 (85%) unequivocally corresponded to distinct Molecular Operational Units, whereas the remaining ones were classified as ‘warnings’ (i.e., showing a mismatch between morphospecies assignment and DNA-based species delimitation). These results are in contrast with other DNA barcoding studies on Odonata showing up to 95% of identification success. The species causing warnings were grouped in three categories depending on if they showed low, high, or mixed genetic divergence patterns. The analysis of haplotype networks revealed unexpected intraspecific complexity at the Italian, Palearctic, and Holarctic scale, possibly indicating the occurrence of cryptic species. Overall, this study provides new insights into the taxonomy of odonates and a valuable basis for future DNA and eDNA-based monitoring studies.


2020 ◽  
Author(s):  
Yue Yin ◽  
Liang-Fei Yao ◽  
Qi Zhang ◽  
Paul D. N. Hebert ◽  
Xiao-Feng Xue

Accurate species delimitation is essential for the study of biodiversity, but morphological approaches often provide a limited ability to connect different life stages, sexes or other phenotypic variants in eriophyoid mites because many species possess two phenotypically distinct forms: protogynes and deutogynes. In this study, we analysed the morphological variation in 26 populations of the eriophyoid mite, Epitrimerus sabinae Xue & Hong, 2005 s.l., from sites across its entire known distribution and revealed three morphotypes (LNS: large, normal palp seta d; MBS: medium, bifurcated palp seta d; SBS: small, bifurcated palp seta d) distinguished by body size and structure of dorsal pedipalp genual seta. Five lines of evidence (morphometrics, DNA-based species delimitation, phylogenetics, haplotype network, mitochondrial genome architecture) indicated that the MBS and SBS groups were very distinct from LNS (E. sabinae s.s.). In fact, the MBS and SBS morphotypes are properly placed in the genus Leipothrix with the MBS lineage representing the protogyne of L. juniperensis, sp. nov., whereas the SBS lineage is its deutogyne. By expanding the approaches used to link protogynes and deutogynes of eriophyoid mites, this study provides a way to accelerate the delineation of species boundaries in this important group of plant pests.


2018 ◽  
Vol 8 (1) ◽  
pp. 222-232 ◽  
Author(s):  
R. V. Yakovlev ◽  
N. A. Shapoval ◽  
G. N. Kuftina ◽  
A. V. Kulak ◽  
S. V. Kovalev

The Proclossiana eunomia (Esper, 1799) complex is currently composed of the several subspecies distributed throughout Palaearсtic region and North America. Despite the fact that some of the taxa have differences in wing pattern and body size, previous assumptions on taxonomy not supported by molecular data. Therefore, the identity of certain populations of this complex has remained unclear and the taxonomic status of several recently described taxa is debated. Here, we provide insights into systematics of some Palaearctic members of this group using molecular approach, based on the analysis of the barcoding fragment of the COI gene taking into account known morphological differences.


Sign in / Sign up

Export Citation Format

Share Document