Pyemotes tritici (Acari: Pyemotidae): a parasitoid of Agrilus auroguttatus and Agrilus coxalis (Coleoptera: Buprestidae) in the southwestern United States of America and southern Mexico

2014 ◽  
Vol 147 (2) ◽  
pp. 244-248 ◽  
Author(s):  
Tom W. Coleman ◽  
Michael I. Jones ◽  
Mark S. Hoddle ◽  
Laurel J. Haavik ◽  
John C. Moser ◽  
...  

AbstractThe straw itch mite, Pyemotes tritici Lagrèze-Fossat and Montané (Acari: Pyemotidae), was discovered parasitising the goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), an invasive exotic species to California, United States of America, and the Mexican goldspotted oak borer, Agrilus coxalis Waterhouse (Coleoptera: Buprestidae), during surveys for natural enemies for a classical biological control programme for A. auroguttatus. Pyemotes tritici caused low levels of mortality to each species of flatheaded borer, but it will likely not be a good candidate for a biological control programme because it is a generalist parasitoid with deleterious human health effects.

2015 ◽  
Vol 147 (3) ◽  
pp. 300-317 ◽  
Author(s):  
Leah S. Bauer ◽  
Jian J. Duan ◽  
Juli R. Gould ◽  
Roy Van Driesche

AbstractFirst detected in North America in 2002, the emerald ash borer (EAB) (Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), an invasive phloem-feeding beetle from Asia, has killed tens of millions of ash (Fraxinus Linnaeus; Oleaceae) trees. Although few parasitoids attack EAB in North America, three parasitoid species were found attacking EAB in China: the egg parasitoid Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) and two larval parasitoids Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius agrili Yang (Hymenoptera: Braconidae). In 2007, classical biological control of EAB began in the United States of America after release of these three species was approved. In 2013, release of the larval parasitoids was approved in Canada. Research continues at study sites in Michigan, United States of America where the establishment, prevalence, and spread of O. agrili and T. planipennisi have been monitored since 2008. However, establishment of S. agrili remains unconfirmed in northern areas, and its release is now restricted to regions below the 40th parallel. In 2015, approval for release of Spathius galinae Belokobylskij (Hymenoptera: Braconidae), an EAB larval parasitoid from the Russian Far East, may be granted in the United States of America. Researchers are guardedly optimistic that a complex of introduced and native natural enemies will regulate EAB densities below a tolerance threshold for survival of ash species or genotypes in forested ecosystems.


2017 ◽  
Vol 149 (4) ◽  
pp. 525-533 ◽  
Author(s):  
Tatyana A. Rand

AbstractAlfalfa weevil (Coleoptera:Curculionidae) is a major pest of alfalfa throughout the United States of America. Biological control research has disproportionately focussed on introduced parasitoids. Generalist predators may also be important, but experimental work evaluating their impacts is lacking. I combined a cross-site survey with a predator exclusion experiment to identify key predators, and test for impacts on weevil survival and plant defoliation levels in Montana and North Dakota, United States of America. Spiders (Araneae) dominated the complex, followed by Nabidae (Hemiptera) and Coccinellidae (Coleoptera). None of the dominant predators showed aggregative responses to weevil (Hypera postica (Gyllenhal); Coleoptera: Curculionidae) or pea aphid (Acyrthosiphon pisum (Harris); Hemiptera: Aphididae) densities across 10 sites surveyed. However, weevil densities were positively correlated with both coccinellid and nabid densities across transects at the experimental site. Thus, predator groups traditionally associated with aphids can show strong aggregative numerical responses to alfalfa weevil larvae at smaller scales. Predator exclusion revealed no significant predator effects on larval survival or alfalfa damage. However, final densities of pea aphids were significantly higher in exclusion treatments relative to controls. The results suggest that even under conditions where predators exert significant pressure on aphids, they may still have minimal impacts on weevils. Additional experimental work is necessary to determine the broader potential of generalist predators as alfalfa weevil control agents.


Author(s):  
Kalpana Singh

The bio-control agents are those organisms that manage the pest population in natural way and keep them below the economic threshold and are thus applied by the agency of man. This process is known as bio-control or biological control. They are foes to the pests and are thus beneficial and a friend for us. There are many pathogens (Bacillus thuringiensis, Bt cotton), parasites (parasitoids, ex. Parasitic wasps, tachinid flies) and predators (ex. Gambusia fish against mosquito larvae) that can be applied as bio-control agents. Many are being used as effective pest control agent in Europe and United States of America. There is lots of potential in this field and more explorations and researches need to be done in an agricultural country like India.


Zootaxa ◽  
2012 ◽  
Vol 3192 (1) ◽  
pp. 59 ◽  
Author(s):  
BRIAN RECTOR ◽  
RADMILA U. PETANOVIĆ

A new eriophyoid mite species, Aculops orlovacae n. sp. (Acari: Prostigmata: Eriophyidae) collected from Dipsacus laciniatus L. (Dipsacaceae) in northern Serbia, is described and illustrated, including digital micrographs depicting key morphological characters. Differential diagnosis is provided in comparison with Aculops salixis Xue, Song et Hong, Aculops rhodensis (Keifer), Aculops hussongi Keifer and Aculops oblongus (Nalepa). This is the first eriophyoid mite species in the genus Aculops described from a host plant in the family Dipsacaceae and it is only the second eriophyoid known from a host species in the genus Dipsacus L. This mite was found during surveys for natural enemies of Dipsacus spp., as part of a classical biological control program.


2020 ◽  
Author(s):  
Tyson Wepprich ◽  
Fritzi S Grevstad

Abstract A key knowledge gap in classical biological control is to what extent insect agents evolve to novel environments. The introduction of biological control agents to new photoperiod regimes and climates may disrupt the coordination of diapause timing that evolved to the growing season length in the native range. We tested whether populations of Galerucella calmariensis L. have evolved in response to the potential mismatch of their diapause timing since their intentional introduction to the United States from Germany in the 1990s. Populations collected from 39.4° to 48.8° latitude in the western United States were reared in growth chambers to isolate the effects of photoperiod on diapause induction and development time. For all populations, shorter day lengths increased the proportion of beetles that entered diapause instead of reproducing. The critical photoperiods, or the day length at which half of a population diapauses, differed significantly among the sampled populations, generally decreasing at lower latitudes. The latitudinal trend reflects changes in growing season length, which determines the number of generations possible, and in local day lengths, at the time when beetles are sensitive to this cue. Development times were similar across populations, with one exception, and did not vary with photoperiod. These results show that there was sufficient genetic variation from the two German source populations to evolve different photoperiod responses across a range of environmental conditions. This study adds to the examples of rapid evolution of seasonal adaptations in introduced insects.


2018 ◽  
Vol 65 ◽  
pp. 111-130 ◽  
Author(s):  
Fatemeh Ganjisaffar ◽  
Elijah J. Talamas ◽  
Marie-Claude Bon ◽  
Brian V. Brown ◽  
Lisa Gonzalez ◽  
...  

TrissolcushyalinipennisRajmohana & Narendran is an Old World egg parasitoid ofBagradahilaris(Burmeister). Its potential as a classical biological control agent in the United States has been under evaluation in quarantine facilities since 2014. A survey of resident egg parasitoids using fresh sentinelB.hilariseggs in Riverside, California, revealed thatT.hyalinipennisis present in the wild. Four cards with parasitized eggs were recovered, from which one yielded a single liveT.hyalinipennisand two unidentified dead wasps (Scelionidae), and three yielded twenty liveTrissolcusbasalis(Wollaston) and one dead wasp. Subsequently, samples from Burbank, California, collected with a Malaise trap as part of the BioSCAN project, yielded five females ofT.hyalinipennis. It is presumed that the introduction ofT.hyalinipennisto this area was accidental. Surveys will be continued to evaluate the establishment ofT.hyalinipennisas well as the presence of other resident parasitoid species.


Sign in / Sign up

Export Citation Format

Share Document