exclusion experiment
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 26)

H-INDEX

15
(FIVE YEARS 4)

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1963
Author(s):  
Briana Spruill-Harrell ◽  
Anna Pérez-Umphrey ◽  
Leonardo Valdivieso-Torres ◽  
Xueyuan Cao ◽  
Robert D. Owen ◽  
...  

Understanding how perturbations to trophic interactions influence virus–host dynamics is essential in the face of ongoing biodiversity loss and the continued emergence of RNA viruses and their associated zoonoses. Herein, we investigated the role of predator exclusion on rodent communities and the seroprevalence of hantaviruses within the Reserva Natural del Bosque Mbaracayú (RNBM), which is a protected area of the Interior Atlantic Forest (IAF). In the IAF, two sympatric rodent reservoirs, Akodon montensis and Oligoryzomys nigripes, harbor Jaborá and Juquitiba hantavirus (JABV, JUQV), respectively. In this study, we employed two complementary methods for predator exclusion: comprehensive fencing and trapping/removal. The goal of exclusion was to preclude the influence of predation on small mammals on the sampling grids and thereby potentially reduce rodent mortality. Following baseline sampling on three grid pairs with different habitats, we closed the grids and began predator removal. By sampling three habitat types, we controlled for habitat-specific effects, which is important for hantavirus–reservoir dynamics in neotropical ecosystems. Our six-month predator exclusion experiment revealed that the exclusion of terrestrial mammalian predators had little influence on the rodent community or the population dynamics of A. montensis and O. nigripes. Instead, fluctuations in species diversity and species abundances were influenced by sampling session and forest degradation. These results suggest that seasonality and landscape composition play dominant roles in the prevalence of hantaviruses in rodent reservoirs in the IAF ecosystem.


2021 ◽  
Author(s):  
A L Giles ◽  
L Rowland ◽  
P R L Bittencourt ◽  
D C Bartholomew ◽  
I Coughlin ◽  
...  

Abstract Future climate change predictions for tropical forests highlight increased frequency and intensity of extreme drought events. However, it remains unclear whether large and small trees have differential strategies to tolerate drought due to the different niches they occupy. The future of tropical forests is ultimately dependent on the capacity of small trees (<10 cm in diameter) to adjust their hydraulic system to tolerate drought. To address this question, we evaluated whether the drought tolerance of neotropical small trees can adjust to experimental water stress and was different from tall trees. We measured multiple drought resistance-related hydraulic traits across nine common neotropical genera at the world’s longest-running tropical forest throughfall-exclusion experiment and compared their responses with surviving large canopy trees. Small understorey trees in both the Control and the throughfall exclusion treatment (TFE) had lower minimum stomatal conductance and maximum hydraulic leaf-specific conductivity relative to large trees of the same genera, as well as greater hydraulic safety margin (HSM), percentage loss of conductivity (PLC) and embolism resistance, demonstrating they occupy a distinct hydraulic niche. Surprisingly, in response to the drought treatment, small trees increased specific hydraulic conductivity by 56.3% and leaf:sapwood area ratio by 45.6%. The greater HSM of small understorey trees relative to large canopy trees likely enabled them to adjust other aspects of their hydraulic systems to increase hydraulic conductivity and take advantage of increases in light availability in the understorey resulting from the drought-induced mortality of canopy trees. Our results demonstrate that differences in hydraulic strategies between small understorey and large canopy trees drive hydraulic niche segregation. Small understorey trees can adjust their hydraulic systems in response to changes in water and light availability indicating natural regeneration of tropical forests following long-term drought may be possible.


2021 ◽  
Author(s):  
Francis Q Brearley ◽  
Hokyung Song ◽  
Binu Tripathi ◽  
Ke Dong ◽  
Noraziah Mohamad Zin ◽  
...  

Edge effects, the altered abiotic and biotic conditions on the borders of natural areas, rarely extend more than a few hundred meters. Edge effects have rarely been linked to altered soil biota, which shape ecosystem processes including carbon storage, biogeochemical cycling, and plant performance. Here, we investigated if agriculturally-mediated increased wildlife populations affect soil biotic communities at a distance well over that of estimated edge effects when they move between agriculture and natural habitats using a 22-year fenced exclusion experiment in a primary rainforest in Peninsular Malaysia. We found that the presence of wildlife (mainly native pigs (Sus scrofa) that crop-raid in nearby oil palm plantations) was associated with higher bacterial diversity, and an altered community composition (mediated by changes in soil pH), and reduced abundances of symbiotic ectomycorrhizal fungi compared to soil in exclosures. There were only minor effects of pigs on soil chemistry or microclimate, so we suggest that changes in soil communities are driven by pigs' leaf litter removal and alterations to plant composition. Our study highlights that indirect effects from agriculture can be transferred by wildlife >1 km into protected areas and this could have important repercussions for ecosystem processes and plant-soil feedbacks.


AoB Plants ◽  
2021 ◽  
Vol 13 (5) ◽  
Author(s):  
Gabriella da Silva Saab ◽  
Vidal de Freitas Mansano ◽  
Anselmo Nogueira ◽  
Isabele Carvalho Maia ◽  
Pedro Joaquim Bergamo ◽  
...  

Abstract Buzz-pollinated pollen flowers have pollen as the primary resource for pollinators and must deal with a conflict between the exploitation of pollen grains by bees and pollination success. It has been hypothesized that heterostemony allows division of labour between stamens as a solution to the pollen dilemma. To test the division of labour hypothesis, we chose Cassia fistula, which has a trimorphic androecium and analysed androecium development, pollen grain release mechanisms and visitor behaviour. We explored the reflectance of floral organs and carried out an exclusion experiment to test the attractiveness of each stamen morph to the bee species. Finally, we explored the structural, ultrastructural and functional variation between the pollen grains, including pollen viability across stamen morphs. The differences among the three stamen morphs, which is developed from two whorls of the stamen, are the first evidence of the division of labour in our study system. Large Bombus and Xylocopa bees actively and exclusively exploited the pollen grains from the central poricidal anthers generating pollen deposition on their bodies. The reflectance pattern of floral organs indicated a targeting of these large bees to the central anthers, corroborated by the anther manipulative experiment where only the exclusion of the anthers positioned in the flower centre, especially the intermediate stamens, reduced bee visits. Both results revealed a division of labour, in which the intermediate stamen morph was responsible for both floral attractiveness and pollen resources. Only the largest stamen morph produced germinable pollen grains, highlighting their role as pollinating stamens. The smallest stamen morph has a less clear function, likely representing an economy in pollen production for feeding function. Our findings suggest that the evolution of the trimorphic androecium is associated with division of labour in large pollen flowers and can represent a strong strategy for circumventing the pollen dilemma, optimizing the feeding function by reducing pollen grain investment from central anthers.


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 805
Author(s):  
Delanie M. Spangler ◽  
Anna Christina Tyler ◽  
Carmody K. McCalley

Wetland ecosystems play a significant role in the global carbon cycle, and yet are increasingly threatened by human development and climate change. The continued loss of intact freshwater wetlands heightens the need for effective wetland creation and restoration. However, wetland structure and function are controlled by interacting abiotic and biotic factors, complicating efforts to replace ecosystem services associated with natural wetlands and making ecologically-driven management imperative. Increasing waterfowl populations pose a threat to the development and persistence of created wetlands, largely through intensive grazing that can shift vegetation community structure or limit desired plant establishment. This study capitalized on a long-term herbivore exclusion experiment to evaluate how herbivore management impacts carbon cycling and storage in a created wetland in Western New York, USA. Vegetation, above- and belowground biomass, soil carbon, carbon gas fluxes and decomposition rates were evaluated in control plots with free access by large grazers and in plots where grazers had been excluded for four years. Waterfowl were the dominant herbivore at the site. Grazing reduced peak growing season aboveground biomass by over 55%, and during the summer, gross primary productivity doubled in grazer exclusion plots. The shift in plant productivity led to a 34% increase in soil carbon after exclusion of grazers for five growing seasons, but no change in belowground biomass. Our results suggest that grazers may inhibit the development of soil carbon pools during the first decade following wetland creation, reducing the carbon sequestration potential and precluding functional equivalence with natural wetlands.


2021 ◽  
Author(s):  
James K. Dytnerski ◽  
Katie E. Marshall ◽  
David M. Baker ◽  
Bayden D. Russell

Herbivores play an integral part in maintaining the health of coral reefs by suppressing the growth of algae and accumulation of sediment and facilitating coral growth. However, in predator-depleted systems where densities of herbivores are unnaturally high, grazing can have detrimental effects on corals through excessive bioerosion. Yet, these benefits and costs are rarely investigated concurrently, especially in eutrophic systems where grazers may play a disproportionate role. We used a year-long exclusion experiment to elucidate the effect of natural densities of the dominant herbivore (the sea urchin Diadema setosum) on coral communities in a heavily fished and eutrophic system (Hong Kong, China). To assess benthic community response to grazing, we monitored the survival and growth of three locally abundant coral species (Pavona decussata, Platygyra carnosus and Porites sp.), algal and sediment accumulation, and bioerosion of coral skeletons across seasons. We found that urchins maintained our experimental coral assemblages, and when excluded, there was a 25 to 75-fold increase in algal-sediment matrix accumulation. Contrary to predictions, there was no general response of corals to urchin presence; Porites sp. survivorship increased while P. decussata was unaffected, and growth rates of both species was unchanged. Surprisingly, P. carnosus experienced higher mortality and bioerosion of up to 33% of their buoyant weight when urchins were present. Therefore, under natural densities, sea urchins clear substrate of algae and sediment, increase survival, maintain growth rates and health of coral assemblages, yet can accelerate the bioerosion of species with porous skeletons following mortality.


Author(s):  
Simon Haberstroh ◽  
Raquel Lobo-do-Vale ◽  
Maria Caldeira ◽  
Maren Dubbert ◽  
Matthias Cuntz ◽  
...  

Knowledge of plant hydraulic strategies (isohydric vs anisohydric) is crucial to predict the response of plants to changing environmental conditions, such as climate-change induced extreme drought. Several abiotic factors, such as evaporative demand, have been shown to seasonally modify the isohydricity of plants, however, the impact of biotic factors, such as plant-plant interactions on hydraulic strategies has seldom been explored. Here, we investigated adaptations in hydraulic strategies for two woody species in response to seasonal abiotic conditions, experimental drought and plant invasion in a Mediterranean cork oak (Quercus suber) ecosystem with a combined shrub invasion (Cistus ladanifer) and rain exclusion experiment. From summer to winter, the degree of isohydricity shifted from partial isohydric to anisohydric in Q. suber and inversely from strict anisohydric to partial isohydric for C. ladanifer. During drought, plant invasion significantly modified the hydraulic strategy of invaded Q. suber to a higher degree of anisohydricity with severe negative consequences for tree functioning, implying progressive leaf and xylem damage. The rain exclusion alone led to a non-significant increase in anisohydricity for both species. We demonstrate that the degree of isohydricity of plants is dynamically determined by the interplay of species-specific hydraulic traits and their abiotic and biotic environment.


2021 ◽  
Author(s):  
Eder Ortiz Martínez ◽  
Jordan Golubov ◽  
Maria C. Mandujano ◽  
Gabriel Arroyo Cosultchi

Abstract Seeds and seedlings are the most critical stages of cacti life cycles. From the thousands of seeds produced in a reproductive season, only a small fraction successfully germinate, the rest are lost to predation, go dormant and remain viable in the seed bank or lose viability. These early stages often depend on facilitation by nurse plants for germination and seedling recruitment. We aim to prescribe actions for the conservation of Cephalocereus polylophus by improving recruitment in the population. The viability of seeds with different storage times was evaluated as an indicator of their potential to form a short-term seed bank. Through the analysis of seed germination and seedling survival under the canopy of two nurse plant species and open areas, we assessed the importance of facilitation for recruitment. A predator exclusion experiment evaluated the intensity of herbivory on seeds and seedlings of different ages. Seeds had germination rates above 90\% under laboratory conditions, even after two years of storage. Seed germination was only registered under one of the two nurses and after two years, up to 4 % of the seedlings planted under both nurse plants survived and protection against herbivores increased seedlings survival. Considering that facilitation and age are crucial for seedling survival of C. polylophus, future conservation programs should include the protection of plant communities and the introduction of seedlings instead of seeds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peter Jeffrey Williams ◽  
Robert C. Ong ◽  
Jedediah F. Brodie ◽  
Matthew Scott Luskin

AbstractOverhunting reduces important plant-animal interactions such as vertebrate seed dispersal and seed predation, thereby altering plant regeneration and even above-ground biomass. It remains unclear, however, if non-hunted species can compensate for lost vertebrates in defaunated ecosystems. We use a nested exclusion experiment to isolate the effects of different seed enemies in a Bornean rainforest. In four of five tree species, vertebrates kill many seeds (13–66%). Nonetheless, when large mammals are excluded, seed mortality from insects and fungi fully compensates for the lost vertebrate predation, such that defaunation has no effect on seedling establishment. The switch from seed predation by generalist vertebrates to specialist insects and fungi in defaunated systems may alter Janzen–Connell effects and density-dependence in plants. Previous work using simulation models to explore how lost seed dispersal will affect tree species composition and carbon storage may require reevaluation in the context of functional redundancy within complex species interactions networks.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10732
Author(s):  
Cassandra Vogel ◽  
Timothy L. Chunga ◽  
Xiaoxuan Sun ◽  
Katja Poveda ◽  
Ingolf Steffan-Dewenter

Background Landscape composition is known to affect both beneficial insect and pest communities on crop fields. Landscape composition therefore can impact ecosystem (dis)services provided by insects to crops. Though landscape effects on ecosystem service providers have been studied in large-scale agriculture in temperate regions, there is a lack of representation of tropical smallholder agriculture within this field of study, especially in sub-Sahara Africa. Legume crops can provide important food security and soil improvement benefits to vulnerable agriculturalists. However, legumes are dependent on pollinating insects, particularly bees (Hymenoptera: Apiformes) for production and are vulnerable to pests. We selected 10 pigeon pea (Fabaceae: Cajunus cajan (L.)) fields in Malawi with varying proportions of semi-natural habitat and agricultural area within a 1 km radius to study: (1) how the proportion of semi-natural habitat and agricultural area affects the abundance and richness of bees and abundance of florivorous blister beetles (Coleoptera: Melloidae), (2) if the proportion of flowers damaged and fruit set difference between open and bagged flowers are correlated with the proportion of semi-natural habitat or agricultural area and (3) if pigeon pea fruit set difference between open and bagged flowers in these landscapes was constrained by pest damage or improved by bee visitation. Methods We performed three, ten-minute, 15 m, transects per field to assess blister beetle abundance and bee abundance and richness. Bees were captured and identified to (morpho)species. We assessed the proportion of flowers damaged by beetles during the flowering period. We performed a pollinator and pest exclusion experiment on 15 plants per field to assess whether fruit set was pollinator limited or constrained by pests. Results In our study, bee abundance was higher in areas with proportionally more agricultural area surrounding the fields. This effect was mostly driven by an increase in honeybees. Bee richness and beetle abundances were not affected by landscape characteristics, nor was flower damage or fruit set difference between bagged and open flowers. We did not observe a positive effect of bee density or richness, nor a negative effect of florivory, on fruit set difference. Discussion In our study area, pigeon pea flowers relatively late—well into the dry season. This could explain why we observe higher densities of bees in areas dominated by agriculture rather than in areas with more semi-natural habitat where resources for bees during this time of the year are scarce. Therefore, late flowering legumes may be an important food resource for bees during a period of scarcity in the seasonal tropics. The differences in patterns between our study and those conducted in temperate regions highlight the need for landscape-scale studies in areas outside the temperate region.


Sign in / Sign up

Export Citation Format

Share Document