Semiochemical-mediated aggregation of the ambrosia beetle Trypodendron betulae (Coleoptera: Curculionidae: Scolytinae)

2020 ◽  
Vol 153 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Susanne Kühnholz ◽  
Regine Gries ◽  
John H. Borden

AbstractPorapak Q-captured volatiles from both sexes of Trypodendron betulae Swaine (Coleoptera: Curculionidae: Scolytinae) excised from newly attacked logs of paper birch, Betula papyrifera Marshall (Betulaceae), as well as volatiles from unattacked birch logs, were analysed by coupled gas chromatographic electroantennographic detection analysis. Active compounds were identified by gas chromatographic mass spectroscopy. The enantiomeric ratio of 6-ethenyl-2,2,6-trimethyloxan-3-ol (linalool oxide pyranoid) was determined using a Cyclodex B column. Field-trapping experiments disclosed that the female-produced aggregation pheromone of T. betulae is a blend of the (3S,6R)-trans- and (3R,6R)-cis-linalool oxide pyranoid. Trap catches were synergistically increased when the pheromone was combined with both the host volatile ethanol and with conophthorin, which was found in female beetles as well as host volatiles. Use of linalool oxide pyranoid reproductively isolates T. betulae from sympatric Trypodendron Stephens species for which only (+)-lineatin has been identified as an aggregation pheromone.


2020 ◽  
Author(s):  
Susanne Kühnholz ◽  
Regine Gries ◽  
John H Borden

Abstract Trypodendron retusum (LeConte) (Coleoptera: Curculionidae: Scolytinae) females excised from newly attacked trembling aspen, Populus tremuloides Michaux (Salicaceae), were shown for the first time to produce the aggregation pheromone (+)-lineatin. Coupled gas chromatographic-electroantennographic detection analysis (GC-EAD) disclosed that the antennae of T. retusum, as well as the antennae of three sympatric species, native T. lineatum (Olivier) and T. rufitarsus (Kirby) and exotic T. domesticum (L.), respond to synthetic (+)-lineatin, but not the (−) enantiomer. In contrast, the antennae of T. betulae Swaine responded to SR- and RR-linalool oxide pyranoid and did not detect lineatin. GC-EAD analysis of volatiles from host and nonhost tree species revealed that conifer-produced α-pinene and angiosperm-produced conophthorin and salicylaldehyde were perceived by the antennae of all three native lineatin-perceiving species, suggesting behavioral activity. Field trapping experiments showed that salicylaldehyde synergized the response of coastal, but not interior, T. retusum to lineatin and inhibited the response of T. lineatum and T. rufitarsus. In the absence of salicylaldehyde, α-pinene appeared to inhibit the response of interior T. retusum to lineatin, while for T. lineatum and T. rufitarsus it had an apparent positive additive or synergistic effect. No behavioral response occurred to conophthorin. The results provide evidence for semiochemical-based reproductive isolation between T. retusum and T. betulae, and between these two angiosperm-infesting species and the two conifer-infesting species. They do not explain how isolation could be maintained between T. lineatum and T. rufitarsus.



2002 ◽  
Vol 134 (6) ◽  
pp. 793-804 ◽  
Author(s):  
C. Bédard ◽  
R. Gries ◽  
G. Gries ◽  
R. Bennett

AbstractFemale spruce seed moths, Cydia strobilella (L.) (Lepidoptera: Tortricidae), oviposit on seed cones of most North American spruces (Picea spp.) (Pinaceae) at the time of pollination, and larvae feed on seeds in the maturing cones. We tested the hypothesis that host-seeking moths respond to volatiles from both host and nonhost trees. In coupled gas chromatographic – electroantennographic detection (GC–EAD) analyses of extracts of spruce seed cone volatiles, > 17 compounds elicited antennal responses from male and female C. strobilella. A blend of seven compounds, including (−)-α-pinene and (−)-β-pinene, α-longipinene and α-humulene, Z3-hexenol, methyl eugenol, and cymen-8-ol, was more attractive to female C. strobilella in laboratory bioassay experiments than the complete seed cone volatile blend, containing these compounds at equivalent quantities and ratios. In GC–EAD analyses of volatile extracts from nonhost angiosperm trees, EAD-activity was associated with compounds present in (almost) every volatile source, including trembling aspen, Populus tremuloides (Michx.) (Salicaceae), paper birch, Betula papyrifera (Marsh.) (Betulaceae), black Cottonwood, Populus balsamifera trichocarpa (Torr. and Gray) (Salicaceae), and bigleaf maple, Acer macrophyllum (Pursh.) (Aceraceae). In a field experiment in the interior of British Columbia, the antennally active nonhost aldehydes, alcohols, and (±)-conophthorin all reduced captures of male C. strobilella in pheromone-baited traps. Collectively, our data suggest that host selection by C. strobilella is mediated, in part, by semiochemicals from both host and nonhost trees.



1996 ◽  
Vol 128 (6) ◽  
pp. 1135-1142 ◽  
Author(s):  
T.G. Gray ◽  
R.F. Shepherd ◽  
G. Gries ◽  
R. Gries

Abstract(E)-11,13-Tetradecadienal (E11,13-14:Ald) is the major component of the sex pheromone of the western blackheaded budworm (WBB), Acleris gloverana Walsingham. The compound was identified in extracts of the female’s pheromone gland by coupled gas chromatographic - electroantennographic detection (GC-EAD) and coupled GC - mass spectrometry in selected ion monitoring mode. In field experiments, E11,13-14:Ald by itself was attractive, but addition of (Z)-11,13-tetradecadienal doubled trap catches of male WBB. (E)-11,13-Tetradecadienol or (E)-11,13-tetradecadienyl acetate in binary or ternary combination with E11,13-14:Ald did not enhance attractiveness of the bait. In comparative assessments of five different trap designs, Uni-traps appeared to be the most suitable for use in pheromone-based monitoring of populations of WBB.



2008 ◽  
Vol 25 (3) ◽  
pp. 124-132 ◽  
Author(s):  
Eric K. Zenner ◽  
Klaus J. Puettmann

Abstract Early release from competitors can be used to influence the species composition, quality, and rate of development of young stands. Release strategies can vary in intensity, ranging from complete removal of competitors and infrequent future entries (early, heavy, infrequent [EHI]) to lighter entries that are repeated more frequently (early, light, often [ELO]). It is unclear, however, which strategy is more successful for producing high-quality birch sawtimber (Betula papyrifera Marsh.) in mixed stands with aspen (Populus tremuloides Michx.). We evaluated the effects of various release intensities on the growth and mortality of a 16–18-ft-tall natural aspen–paper birch stand in Minnesota following density reductions from 1,500–3,000 trees ac−1 (trees per acre [TPA]) to 750 (ELO750), 500 (EHI500), and 250 (EHI250) TPA. After 6 years, paper birch was overtopped by aspen and contributed only 14% of basal area in control plots, but it occupied all diameter classes and contributed 77–87% of basal area in release plots. The basal area and volume of all paper birch and of only paper birch crop trees (100 largest TPA) were highest in lightly released ELO750 and lowest in control plots. Growth of mean quadratic diameter, basal area, and volume of paper birch was 2–3 times higher in release plots but independent of release intensity. Early release is necessary to maintain paper birch dominance, but there is no short-term advantage among treatment intensities. Long-term growth simulations using the Forest Vegetation Simulator suggest that merchantable timber production was unaffected by release strategy but that the EHI250 strategy produced the most birch sawtimber (40 times as much as in ELO750).



Sign in / Sign up

Export Citation Format

Share Document