field trapping
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Manuela Monti ◽  
Carlo Alberto Redi ◽  
Ernesto Capanna

Abstract Background: Ten years ago the main Genome Size (GS) database contained records for 830 insects; although this number has now nearly doubled, 1645 (Gregory 2011 vs Gregory 2021 databases), the paucity of records highlights both the difficulty of animal field trapping and the time-consuming laboratory techniques to evaluate them. Thus, new entries are necessary to reach a satisfactory GS panorama for cockroaches. Results: We report GS values for nine cockroaches (order Blattodea, families Blattidae, Blaberidae and Ectobiidae, ex Blattelidae,), three of which are original additions to the ten already present in the GS database: the death’s head roach (Blaberus craniifer), the Surinam cockroach (Pycnoscelus surinamensis) and the Madeira cockroach (Leucophaea maderae). Three of our values confirm the existing data for the German (Blattella germanica), the oriental (Blatta orientalis) and the giant Mexican (Blabera fusca) cockroaches. Regarding the GS of the American cockroach (Periplaneta americana) the GS database contains two contrasting values (2.72 vs 3.41 pg). We suggest that the 2.72 pg value is likely to be the correct GS as it strikingly similar to our sperm DNA content evaluation (2.80 ± 0.11 pg). Finally, we suggest halving the published GS of the Argentine cockroach Blaptica dubia and the spotted cockroach (the gray cockroach) Nauphoeta cinerea as our estimates come from the evaluation of the sperm DNA content. The data already reported in the literature are based on DNA contents of neural cells (likely polyploid) obtained by grinding entire heads of animals.Conclusions: Although the paucity of the GS data does not allow firm considerations on the possible evolutionary role played by the GS in diversifying cockroach species, we offer two speculative hypotheses that need to be validated by increasing the available GS records: (i) the occurrence of a correlation between increasing 2N chromosome number and GS within the order Blattodea; and (ii) the possible occurrence of a polyploidization phenomenon doubling a basic GS of 0.58 pg of some termite families (superfamily Blattoidea, epifamily Termitoidae) up to the maximum GS value of 3.24 for the Blaberidae family within the order Blattodea (super-order Dictyoptera).


2022 ◽  
Vol 12 (2) ◽  
pp. 815
Author(s):  
Genwang Wang ◽  
Ye Ding ◽  
Haotian Long ◽  
Yanchao Guan ◽  
Xiwen Lu ◽  
...  

Nano-manipulation technology, as a kind of “bottom-up” tool, has exhibited an excellent capacity in the field of measurement and fabrication on the nanoscale. Although variety manipulation methods based on probes and microscopes were proposed and widely used due to locating and imaging with high resolution, the development of non-contacted schemes for these methods is still indispensable to operate small objects without damage. However, optical manipulation, especially near-field trapping, is a perfect candidate for establishing brilliant manipulation systems. This paper reports about simulations on the electric and force fields at the tips of metallic probes irradiated by polarized laser outputted coming from a scanning near-field optical microscope probe. Distributions of electric and force field at the tip of a probe have proven that the polarized laser can induce nanoscale evanescent fields with high intensity, which arouse effective force to move nanoparticles. Moreover, schemes with dual probes are also presented and discussed in this paper. Simulation results indicate that different combinations of metallic probes and polarized lasers will provide diverse near-field and corresponding optical force. With the suitable direction of probes and polarization direction, the dual probe exhibits higher trapping force and wider effective wavelength range than a single probe. So, these results give more novel and promising selections for realizing optical manipulation in experiments, so that distinguished multi-functional manipulation systems can be developed.


Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 90
Author(s):  
Jing Liu ◽  
Liangyu Sun ◽  
Di Fu ◽  
Jiayun Zhu ◽  
Min Liu ◽  
...  

Spiders are important natural enemies of rice pests. Studying the effects of herbivore-induced rice volatiles on spider attraction and predation ability may lead to safer methods for pest prevention and control. In this study, four-arm olfactometer, predation ability experiment, and field trapping experiment were used to evaluate the effects of herbivore-induced rice volatiles on Pirata subpiraticus Bösenberg et Strand (Araneae: Lycosidae) and Pardosa pseudoannulata Bösenberg et Strand (Araneae: Lycosidae). The 0.5 μg/μL linalool concentration was attractive, and also shortened the predation latency in male P. subpiraticus and female P. pseudoannulata. The 0.5 μg/μL linalool concentration increased the daily predation capacity of female P. pseudoannulata. Male P. pseudoannulata were attracted to 1.0 g/L methyl salicylate, which also shortened their predation latency. In field experiments, methyl salicylate and linalool were effective for trapping spiders. Herbivore-induced rice volatiles attract rice field spiders and affect their predatory ability. These results suggest that herbivore-induced rice volatiles can be used to attract spiders and provide improved control of rice pests.


Author(s):  
David R. Hall ◽  
Steven J. Harte ◽  
Dudley I. Farman ◽  
Mark Ero ◽  
Alfred Pokana

AbstractThe coconut rhinoceros beetle, Oryctes rhinoceros (Linnaeus 1758) (Coleoptera: Scarabaeidae: Dynastinae) (CRB), is endemic to tropical Asia where it damages both coconut and oil palm. A new invasion by CRB occurred on Guam in 2007 and eradication attempts failed using commonly applied Oryctes rhinoceros nudivirus (OrNV) isolates. This and subsequent invasive outbreaks were found to have been caused by a previously unrecognized haplotype, CRB-G, which appeared to be tolerant to OrNV. The male-produced aggregation pheromone of the endemic, susceptible strain of O. rhinoceros (CRB-S) was previously identified as ethyl 4-methyloctanoate. Following reports from growers that commercial lures containing this compound were not attractive to CRB-G, the aim of this work was to identify the pheromone of CRB-G. Initial collections of volatiles from virgin male and female CRB-G adults from the Solomon Islands failed to show any male- or female-specific compounds as candidate pheromone components. Only after five months were significant quantities of ethyl 4-methyloctanoate and 4-methyloctanoic acid produced by males but not by females. No other male-specific compounds could be detected, in particular methyl 4-methyloctanoate, 4-methyl-1-octanol, or 4-methyl-1-octyl acetate, compounds identified in volatiles from some other species of Oryctes. Ethyl 4-methyloctanoate elicited a strong electroantennogram response from both male and female CRB-G, but these other compounds, including 4-methyloctanoic acid, did not. The enantiomers of ethyl 4-methyloctanoate and 4-methyloctanoic acid were conveniently prepared by enzymatic resolution of the commercially-available acid, and the enantiomers of the acid, but not the ester, could be separated by gas chromatography on an enantioselective cyclodextrin phase. Using this approach, both ethyl 4-methyloctanoate and 4-methyloctanoic acid produced by male CRB-G were shown to be exclusively the (R)-enantiomers whereas previous reports had suggested male O. rhinoceros produced the (S)-enantiomers. However, re-examination of the ester and acid produced by male CRB-S from Papua New Guinea showed that these were also the (R)-enantiomers. In field trapping experiments carried out in the Solomon Islands, both racemic and ethyl (R)-4-methyloctanoate were highly attractive to both male and female CRB-G beetles. The (S)-enantiomer and the corresponding acids were only weakly attractive. The addition of racemic 4-methyloctanoic acid to ethyl 4-methyloctanoate did significantly increase attractiveness, but the addition of (R)- or (S)-4-methyloctanoic acid to the corresponding ethyl esters did not. Possible reasons for the difference in assignment of configuration of the components of the CRB pheromone are discussed along with the practical implications of these results.


2021 ◽  
Author(s):  
David R Hall ◽  
Steven J Harte ◽  
Dudley I Farman ◽  
Mark Ero ◽  
Alfred Pokana

Abstract The coconut rhinoceros beetle, Oryctes rhinoceros (Linnaeus 1758) (Coleoptera: Scarabaeidae: Dynastinae) (CRB), is endemic to tropical Asia where it damages both coconut and oil palm. A new invasion by CRB occurred on Guam in 2007 and eradication attempts failed using commonly applied O. rhinoceros nudivirus (OrNV) isolates. This and subsequent invasive outbreaks were found to have been caused by a previously unrecognized haplotype, CRB-G, which appeared to be tolerant to OrNV. The male-produced aggregation pheromone of the endemic, susceptible strain of O. rhinoceros (CRB-S) was previously identified as ethyl 4-methyloctanoate. There were anecdotal reports that the commercial lures containing this compound were not attractive to CRB-G and the aim of this work was to identify the pheromone of CRB-G. Initial collections of volatiles from virgin male and female CRB-G adults failed to show any male- or female-specific compounds as candidate pheromone components. Only after five months were significant quantities of ethyl 4-methyloctanoate and 4-methyloctanoic acid produced by males but not by females. No other male-specific compounds could be detected, in particular methyl 4-methyloctanoate, 4-methyl-1-octanol or 4-methyl-1-octyl acetate, compounds identified in volatiles from some other species of Oryctes. Ethyl 4-methyloctanoate elicited a strong electroantennogram response from both male and female CRB-G, but these other compounds, including 4-methyloctanoic acid, did not. The enantiomers of ethyl 4-methyloctanoate and 4-methyloctanoic acid were conveniently prepared by enzymatic resolution of the commercially-available acid, and the enantiomers of the acid, but not the ester, could be separated by gas chromatography on an enantiospecific cyclodextrin phase. Using this approach, both the ethyl 4-methyloctanoate and the 4-methyloctanoic acid produced by male CRB-G were shown to be exclusively the (R)-enantiomers whereas previous reports had suggested male CRB-S produced the (S)-enantiomers. However, re-examination of the ester and acid produced by male CRB-S showed that these were also the (R)-enantiomers. In field trapping experiments, both racemic and ethyl (R)-4-methyloctanoate were highly attractive to both male and female CRB-G. The (S)-enantiomer and the corresponding acids were only weakly attractive. Addition of racemic 4-methyloctanoic acid to ethyl 4-methyloctanoate did significantly increase attractiveness, but addition of (R)- or (S)-4-methyloctanoic acid to the corresponding ethyl esters did not. Reasons for the previous misassignment of the configuration of the components of the CRB-S pheromone are discussed along with the practical implications of these results.


2021 ◽  
Author(s):  
Juan Huang ◽  
Matthew J Grieshop ◽  
Larry J Gut

Abstract Trap captures of obliquebanded leafroller, Choristoneura rosaceana (Harris) to pheromone blends in ratios approximating those reported in pheromone glands and a novel blend based on a volatile headspace collection from live virgin females were evaluated in field experiments in Michigan apple orchards. In an initial field trapping study, pheromone lures composed of either a three- or four-component blend approximation of the blend present in female pheromone glands at doses ranging from 0.1 to 20 mg/lure were compared. The four-component blend was a combination of (Z)-11-tetradecenyl acetate (Z11-14:Ac), (E)-11-tetradecenyl acetate (E11-14:Ac), (Z)-11-tetradecen-1-ol (Z11-14:OH), and (Z)-11-tetradecenal (Z11-14:Al) in a ratio of 96.5:1.8:1.4:0.2, respectively, while the three-component blend lacked Z11-14:Al. Pheromone emissions by groups of virgin females and commercial lures were collected in the laboratory and analyzed by gas chromatography. These data were used to formulate a new pheromone lure that was compared to a commercial lure in a second trapping study. In the first field study, traps baited with 10 mg pheromones or above captured significantly more moths than traps baited with 1 mg or less, regardless of the blend. Surprisingly, groups of virgin females only emitted two detectable pheromone components, Z11-14:Ac and Z11-14:OH in a ratio of 37:63 which was substantially different from the blends detected in pheromone glands in the literature. The newly formulated pheromone lure based on females’ emission was more than twice as attractive as the commercial lure which emitted a 74:5:21 three-component blend of Z11-14:Ac, E11-14:Ac, and Z11-14:OH, indicating that the response of C. rosaceana to its pheromone was more strongly mediated by the pheromone quantity relative to the blend ratio.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 158
Author(s):  
Mengmeng Zhang ◽  
Zhihao Cui ◽  
Nuo Zhang ◽  
Guanglin Xie ◽  
Wenkai Wang ◽  
...  

Holotrichia parallela (Coleoptera: Scarabaeidae: Melolonthinae) is a notorious pest of many crops, especially peanuts. In this study, volatiles from peanut plants were analyzed using both gas chromatographic-electroantennographic detection (GC-EAD) and gas chromatography/mass spectrometry (GC/MS) techniques, and tested for adult attraction with field trapping bioassays in Hebei Province, China. GC-EAD analyses indicated that H. parallela antennae strongly responded to twelve GC peaks, including eight identified compounds, (Z)-β-ocimene, hexanal, 6-methyl-5-hepten-2-one, nonanal, dihydromyrcenol, linalool, β-caryophyllene, methyl salicylate, and four unidentified compounds. When tested individually in field conditions from 24 to 31 July, 2020, β-caryophyllene and hexanal significantly attracted both sexes of H. parallela, whereas all other compounds were unattractive. A blend of β-caryophyllene and hexanal at a ratio of 2:1, close to the natural ratio of these two compounds from the intact peanut plant, was most attractive to the beetles. The remaining identified compounds, (Z)-β-ocimene, 6-methyl-5-hepten-2-one, nonanal, dihydromyrcenol, linalool, and methyl salicylate had no synergistic effects on H. parallela attraction when tested in combination with the blend of β-caryophyllene and hexanal. These results demonstrated that β-caryophyllene and hexanal in the volatiles from peanut plants have strong attraction to H. parallela. These two compounds have the potential to be used for monitoring H. parallela and its management programs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Jones ◽  
M. T. Fountain ◽  
C. S. Günther ◽  
P. E. Eady ◽  
M. R. Goddard

AbstractDrosophila suzukii flies cause economic losses to fruit crops globally. Previous work shows various Drosophila species are attracted to volatile metabolites produced by individual fruit associated yeast isolates, but fruits naturally harbour a rich diversity of yeast species. Here, we report the relative attractiveness of D. suzukii to yeasts presented individually or in combinations using laboratory preference tests and field trapping data. Laboratory trials revealed four of 12 single yeast isolates were attractive to D. suzukii, of which Metschnikowia pulcherrima and Hanseniaspora uvarum were also attractive in field trials. Four out of 10 yeast combinations involving Candida zemplinina, Pichia pijperi, M. pulcherrima and H. uvarum were attractive in the laboratory. Whilst a combination of M. pulcherrima + H. uvarum trapped the greatest number of D. suzukii in the field, the efficacy of the M. pulcherrima + H. uvarum combination to trap D. suzukii was not significantly greater than traps primed with volatiles from only H. uvarum. While volatiles from isolates of M. pulcherrima and H. uvarum show promise as baits for D. suzukii, further research is needed to ascertain how and why flies are attracted to certain baits to optimise control efficacy.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0235028
Author(s):  
Arodí P. Favaris ◽  
Amanda C. Túler ◽  
Weliton D. Silva ◽  
Sérgio R. Rodrigues ◽  
Walter S. Leal ◽  
...  

Cyclocephalini beetles of the genus Cyclocephala (Coleoptera: Melolonthidae: Dynastinae) use flowers of some plants as food, shelter, and mating sites. However, little is known about floral scent chemistry involved in this interaction. Here we show that a sesquiterpene alcohol mediates attraction of Cyclocephala paraguayensis Arrow, on bottle gourd flowers, Lagenaria siceraria (Cucurbitaceae). Both males and females started to aggregate on the flowers at twilight; after that, mating began and remained for the entire night. GC-FID/EAD analysis of the L. siceraria floral scent collected in the field revealed that only the major constituent of the airborne volatiles elicited electroantennographic responses on male and female antennae of C. paraguayensis. This compound was identified as (3S,6E)-nerolidol, which was tested in two field trapping trials in Brazil. In the first bioassay, traps baited with nerolidol (mix of isomers) captured significantly more adult C. paraguayensis than control traps. In the second field trial, catches in traps baited with a mixture of isomers or enantiopure nerolidol were significantly higher than captures in control traps, but the treatments did not differ significantly. Analysis from the gut content of adult C. paraguayensis showed the presence of pollen, suggesting that they also use bottle gourd flowers for their nourishment. Taken together, these results suggest that (3S,6E)-nerolidol plays an essential role in the reproductive behavior of C. paraguayensis by eliciting aggregation, mating, and feeding.


2020 ◽  
Author(s):  
Susanne Kühnholz ◽  
Regine Gries ◽  
John H Borden

Abstract Trypodendron retusum (LeConte) (Coleoptera: Curculionidae: Scolytinae) females excised from newly attacked trembling aspen, Populus tremuloides Michaux (Salicaceae), were shown for the first time to produce the aggregation pheromone (+)-lineatin. Coupled gas chromatographic-electroantennographic detection analysis (GC-EAD) disclosed that the antennae of T. retusum, as well as the antennae of three sympatric species, native T. lineatum (Olivier) and T. rufitarsus (Kirby) and exotic T. domesticum (L.), respond to synthetic (+)-lineatin, but not the (−) enantiomer. In contrast, the antennae of T. betulae Swaine responded to SR- and RR-linalool oxide pyranoid and did not detect lineatin. GC-EAD analysis of volatiles from host and nonhost tree species revealed that conifer-produced α-pinene and angiosperm-produced conophthorin and salicylaldehyde were perceived by the antennae of all three native lineatin-perceiving species, suggesting behavioral activity. Field trapping experiments showed that salicylaldehyde synergized the response of coastal, but not interior, T. retusum to lineatin and inhibited the response of T. lineatum and T. rufitarsus. In the absence of salicylaldehyde, α-pinene appeared to inhibit the response of interior T. retusum to lineatin, while for T. lineatum and T. rufitarsus it had an apparent positive additive or synergistic effect. No behavioral response occurred to conophthorin. The results provide evidence for semiochemical-based reproductive isolation between T. retusum and T. betulae, and between these two angiosperm-infesting species and the two conifer-infesting species. They do not explain how isolation could be maintained between T. lineatum and T. rufitarsus.


Sign in / Sign up

Export Citation Format

Share Document