Evaluating methods to detect and monitor North American larval parasitoids of the emerald ash borer (Coleoptera: Buprestidae)

2020 ◽  
Vol 152 (3) ◽  
pp. 389-398
Author(s):  
Justin M. Gaudon ◽  
D. Barry Lyons ◽  
Gene C. Jones ◽  
Jeremy D. Allison ◽  
Sandy M. Smith

AbstractPopulations of native North American parasitoids attacking Agrilus Curtis (Coleoptera: Buprestidae) species have recently been considered as part of an augmentative biological control programme in an attempt to manage emerald ash borer, Agrilus planipennis Fairmaire, a destructive wood-boring beetle discovered in North America in 2002. We evaluate trapping methods to detect and monitor populations of two important native larval parasitoids, Phasgonophora sulcata Westwood (Hymenoptera: Chalcididae) and Atanycolus Förster (Hymenoptera: Braconidae) species, attacking emerald ash borer in its introduced range. We found that purple prism traps captured more P. sulcata than green prism traps, yellow pan traps, and log samples and thus were considered better for detecting and monitoring P. sulcata populations. Trap type did not affect the number of captures of Atanycolus species. Surprisingly, baiting prism traps with a green leaf volatile or manuka oil did not significantly increase captures of P. sulcata or Atanycolus species. Based on these results, unbaited purple prism traps would be optimal for sampling these native emerald ash borer parasitoids in long-term management programmes.

2019 ◽  
Vol 45 (3) ◽  
Author(s):  
Laurel Haavik ◽  
Daniel Herms

The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) invasion of North America has increased interest in ash (Fraxinus, Oleaceae) phylogeny, ecology, and physiology. In a common garden in central Ohio, we compared the performance of three North American ash cultivars that are highly susceptible to EAB (F. pennsylvanica ‘Patmore,’ F. americana ‘Autumn Purple,’ and F. nigra ‘Fall Gold’), one North American species that is less susceptible to EAB (F. quadrangulata), and two taxa that are resistant to EAB (F. mandshurica and F. mandshurica × F. nigra ‘Northern Treasure’). During the 2015 growing season, we measured diameter growth, foliar N concentration, specific leaf area, and on four dates (two with adequate and two with low precipitation) we measured CO2 assimilation rate (A), stomatal conductance (gs), intercellular CO2 concentration (Ci), photosynthetic nitrogen use efficiency (PNUE), variable fluorescence (Fv’/Fm’: efficiency of energy harvested by open photosystem II reaction centers), and the fraction of photons absorbed by photosystem II that were used for photosynthesis (ɸPSII). F. pennsylvanica grew fastest and on most sampling dates was superior in physiological performance (A, gs, and ɸPSII). Generally, however, there was little interspecific variation in growth and physiology among the different ash taxa tested, as all performed well. This suggests that the EAB-resistant F. mandshurica and F. mandshurica × F. nigra hybrid, as well as the moderately resistant blue ash, are as physiologically well-suited to growing conditions in the Midwestern United States as green and white ash cultivars that had been widely planted prior to the EAB invasion.


2012 ◽  
Vol 15 (7) ◽  
pp. 1537-1559 ◽  
Author(s):  
Carson C. Keever ◽  
Christal Nieman ◽  
Larissa Ramsay ◽  
Carol E. Ritland ◽  
Leah S. Bauer ◽  
...  

2019 ◽  
Vol 113 (2) ◽  
pp. 622-632 ◽  
Author(s):  
Michael I Jones ◽  
Juli R Gould ◽  
Hope J Mahon ◽  
Melissa K Fierke

Abstract Biological control offers a long-term and sustainable option for controlling the destructive forest pest emerald ash borer (EAB), Agrilus planipennis Fairmaire, in North America. Three larval parasitoids, Spathius agrili Yang (Hymenoptera: Braconidae), Tetrastichus planipennisi Yang (Eulophidae), and Spathius galinae Belokobylskij & Strazanac, have been introduced to North America from the native range of EAB (northeastern Asia). While T. planipennisi appears to be persisting where it has been introduced in northern United States, S. agrili failed to establish in northeastern states. The more recently identified parasitoid S. galinae was recovered from the Russian Far East and climate matching suggests it should be suited for release in colder climates. We collected data on the phenology of EAB and its introduced larval parasitoids from colonies established in an insectary, growth chambers, and field-caged trees in Syracuse, New York to determine whether asynchrony between parasitoids and EAB or climate could impact establishment and persistence. Phenological data indicated EAB has one and 2-yr life cycles in New York, with parasitoid-susceptible EAB larvae available spring to fall for parasitism. Insectary and growth chamber studies indicated S. galinae and T. planipennisi were synchronous with EAB phenology, and field studies suggested both species could overwinter in northeastern climates. Spathius agrili was asynchronous with EAB phenology and climate, emerging when fewer parasitoid-susceptible EAB larvae were available and temperatures were not optimal for survival. Our results suggest S. galinae and T. planipennisi are suited for biological control of EAB at the northern limits of its range in North America.


2011 ◽  
Vol 28 (4) ◽  
pp. 219-221 ◽  
Author(s):  
Michael J. Skvarla ◽  
Jeffrey D. Holland

Abstract Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive beetle attacking North American ash trees (Fraxinus L. [Oleaceae]). Populations in infested areas are monitored with purple sticky traps. During summer 2008, we monitored nine pairs of purple traps and clear control traps to determine which other insect families are attracted to these traps and whether these traps might be used to monitor other pest insects. We argue that monitoring bycatch in these traps could greatly increase the potential of finding other invasive species.


2012 ◽  
Vol 42 (8) ◽  
pp. 1542-1550 ◽  
Author(s):  
Sara R. Tanis ◽  
Deborah G. McCullough

Catastrophic mortality of North American ash ( Fraxinus spp.) caused by Agrilus planipennis Fairmaire has been attributed to the lack of coevolved resistance between native ash species and this Asian invader. Although A. planipennis host preference or tree resistance can vary, all North American ash species are presumably highly vulnerable to A. planipennis. We inventoried live and dead blue ash ( Fraxinus quadrangulata Michx.) and white ash ( Fraxinus americana L.) in two southeastern Michigan woodlots several years after the A. planipennis invasion to assess their survival. Agrilus planipennis populations in this area peaked in approximately 2005, and the region is now characterized by nearly complete ash mortality. At the Plymouth site, 71% of the original 380 blue ash were alive, whereas only 29 saplings of the original 187 white ash were alive. At the Superior Township site, 63% of the original 210 blue ash were living, whereas all 125 white ash were dead. More than 80% of the blue ash had evidence of previous A. planipennis colonization, but 87% appeared healthy in 2011. Tree diameter did not consistently affect survival, and live and dead trees of both species were distributed across sites, indicating that differential survival was not attributable to localized conditions.


2007 ◽  
Vol 33 (5) ◽  
pp. 338-349
Author(s):  
Andrea Anulewicz ◽  
Deborah McCullough ◽  
David Cappaert

Emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae), a phloem-feeding insect native to Asia, was identified in 2002 as the cause of widespread ash (Fraxinus) mortality in southeast Michigan, U.S. and Windsor, Ontario, Canada. Little information about A. planipennis is available from its native range and it was not known whether this invasive pest would exhibit a preference for a particular North American ash species. We monitored A. planipennis density and canopy condition on green ash (F. pennsylvanica) and white ash (F. americana) street trees in four neighborhoods and on white and blue ash (F. quadrangulata) trees in two woodlots in southeast Michigan. Green ash street trees had significantly more canopy dieback and higher A. planipennis densities than white ash trees growing in the same neighborhood. Density increased by two- to fourfold in both species over a 3-year period. Canopy dieback increased linearly from 2002 to 2005 as A. planipennis density increased (R 2= 0.70). In each of the woodlots, A. planipennis densities were significantly higher on white ash trees than blue ash trees. Woodpecker predation occurred in all sites and accounted for 35% of the A. planipennis that developed on trees we surveyed. Results indicate that surveys for A. planipennis detection in areas with multiple ash species should focus on the relatively preferred species.


2014 ◽  
Vol 40 (6) ◽  
Author(s):  
Holly Martinson ◽  
Chris Sargent ◽  
Michael Raupp

Emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), is a devastating buprestid beetle introduced to North America from Asia. Asian ash trees exhibit resistance to EAB, likely due to a shared co-evolutionary history. Resistance to one pest, however, does not necessarily confer resistance to others. Should Asian ash be highly susceptible to North American herbivores, the utility of such species for hybridization, breeding programs, and establishment in managed landscapes could be compromised. Common urban problems, such as drought stress, can increase borer attack and survival and may further complicate the search for resistant plant material. The objectives of this study were to examine the relative susceptibility of green (Fraxinus pennsylvanica) and Manchurian (F. mandshurica) ash to EAB and indigenous borers and whether that susceptibility changed with drought stress. In a common garden experiment, EAB occurred more frequently and reached higher abundances in green than Manchurian ash. The frequency and abundance of bark beetles (Curculionidae), North American native clearwing borers (Sesiidae), and longhorn beetles (Cerambycidae) were similar in the two ash species. Generation time of EAB was uniformly one year and did not depend on ash species or water stress. Although borers increased as expected in stressed trees, the relative susceptibility of green and Manchurian ash to borers did not change. The findings suggest Manchurian ash may be resistant to several classes of borers, regardless of insect geographic origin, although these conclusions should be viewed with some caution until the results can be verified in larger trees.


Sign in / Sign up

Export Citation Format

Share Document