scholarly journals Functions of Heat Shock Proteins in Pathways of the Innate and Adaptive Immune System

2014 ◽  
Vol 193 (12) ◽  
pp. 5765-5771 ◽  
Author(s):  
Robert Julian Binder
2002 ◽  
Vol 23 (3) ◽  
pp. 130-135 ◽  
Author(s):  
Robert P.A Wallin ◽  
Andreas Lundqvist ◽  
Solveig H Moré ◽  
Arne von Bonin ◽  
Rolf Kiessling ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3351-3351
Author(s):  
Charles A. Gullo ◽  
William Hwang ◽  
Melvin Au ◽  
Edward A. Greenfield ◽  
Kenneth C. Anderson ◽  
...  

Abstract Effective immune-based therapies against the plasma cell malignancy, multiple myeloma (MM), are currently lacking. Identification of novel antigens (Ag) on the surface of MM cells to use as cellular targets for the destruction of cancer cells by the body’s immune system has been of great interest. We and others have demonstrated that CD40 stimulation of MM cells results in marked upregulation of membrane bound proteins such as Ku86. Using CD40 triggered MM cells as immunogens and hybridoma technology; we generated a monoclonal antibody (mAb), 6D11, that recognizes a CD40 induced cell membrane Ag on MM cells. This Ag is detectable on the surface of MM cells using indirect immunofluorescence flow cytometric analysis. Moreover, in Western immunoblotting assays, 6D11 mAb reacts with a 94 kDa protein, which is strongly associated with a 78 kDa protein. Using high performance liquid chromatography and protein microsequencing, we confirm that these proteins are the heat shock proteins (HSP), glucose-regulated peptide 94 (GRP94) and GRP78, respectively. These data were confirmed using co-immunprecipitation experiments. Furthermore, we demonstrate through indirect immunofluorescence flow cytometric analysis and quantitative real time reverse transcription polymerase chain reaction (RQ-PCR) that CD40 ligand (CD40L) stimulation of MM cells results in rapid upregulation of both GRP94 and GRP78. Since HSPs have been shown to play a role in both Ag presentation, as well as the intracellular transport of cellular Ags, it is tempting to speculate that cell membrane expression of tumor-specific peptides could also be induced via CD40 triggering. Accordingly, CD40 induced cell membrane HSP expression resulted in increased antigenicity as determined by increased co-stimulatory molecule expression on Ag presenting cells (APC) and by increased immunoreactivity in mixed lymphocyte reactions (MLR). This suggests that CD40 induced HSP expression may indeed result in increased recognition of MM cancer by the immune system. Our study therefore supports the development of CD40-based targeted cell therapies against MM.


2014 ◽  
Vol 306 (12) ◽  
pp. G1033-G1041 ◽  
Author(s):  
Hao-Yu Liu ◽  
Johan Dicksved ◽  
Torbjörn Lundh ◽  
Jan Erik Lindberg

The gastrointestinal (GI) tract of mammals is inhabited by trillions of microorganisms, resulting in exceedingly complex networking. The interaction between distinct bacterial species and the host immune system is essential in maintaining homeostasis in the gut ecosystem. For instance, the gut commensal microbiota dictates intestinal mucosa maturation and its abundant immune components, such as cytoprotective heat shock proteins (HSP). Here we examined physiological expression of HSP in the normal porcine GI tract and found it to be gut region- and cell type-specific in response to dietary components, microbes, and microbial metabolites to which the mucosa surface is exposed. Correlations between HSP72 expression and ileal Lactobacillus spp. and colonic clostridia species, and between HSP27 expression and uronic acid ingestion, were important interplays identified here. Thus this study provides novel insights into host-microbe interactions shaping the immune system that are modifiable by dietary regime.


2005 ◽  
Vol 73 (11) ◽  
pp. 7687-7696 ◽  
Author(s):  
Khaleda Rahman Qazi ◽  
Mousumi Rahman Qazi ◽  
Esther Julián ◽  
Mahavir Singh ◽  
Manuchehr Abedi-Valugerdi ◽  
...  

ABSTRACT During stress conditions, such as infection, the synthesis of heat shock proteins (HSPs) in microorganisms is upregulated. Since a high degree of homology exists within each HSP family, we postulated that exposure to microorganisms could prime the immune system for evolutionarily diverse HSPs. We tested this hypothesis by priming mice with three microorganisms, namely, Mycobacterium bovis BCG, Mycobacterium vaccae, and Chlamydia pneumoniae. After this, mice received a dose of the various HSPs. We found that BCG and M. vaccae but not C. pneumoniae primed the immune system for the induction of secondary immunoglobulin G (IgG) responses to most of the HSPs tested. Analysis of the IgG1 and IgG2a profile and gamma interferon production induced against the HSPs revealed the induction of a mixture of responses. We also observed that sera from mice treated with M. vaccae and HSP70 were cross-reactive, but no antibody complexes were observed in their kidneys, which frequently are targets for autoantibody reactions. Our findings add further support for the use of HSPs as effective vaccine adjuvants.


Sign in / Sign up

Export Citation Format

Share Document