scholarly journals Liver-Resident CD103+ Dendritic Cells Prime Antiviral CD8+ T Cells In Situ

2015 ◽  
Vol 194 (7) ◽  
pp. 3213-3222 ◽  
Author(s):  
Peter D. Krueger ◽  
Taeg S. Kim ◽  
Sun-Sang J. Sung ◽  
Thomas J. Braciale ◽  
Young S. Hahn
Keyword(s):  
T Cells ◽  
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A493-A493
Author(s):  
Takaaki Oba ◽  
Mark Long ◽  
Tibor Keler ◽  
Henry Marsh ◽  
Hans Minderman ◽  
...  

BackgroundThe ability of cancer cells to ensure T-cell exclusion from the tumor microenvironment (TME) is a significant mechanism of resistance to anti-PD-1/PD-L1 therapy. Evidence indicates crucial roles of Batf3-dependent conventional type 1 dendritic cells (cDC1s) for inducing antitumor T-cell immunity. However, strategies to maximize the engagement of cDC1s into such ‘immune cold tumors‘ remain elusive. Using multiple syngeneic orthotopic mouse models of tumors resistant to anti-PD-L1-therapy, we hypothesized that in situ induction and activation of tumor-residing cDC1s overcomes poor T-cell infiltration.MethodsWe utilized three mouse non-T cell-inflamed tumor models that are refractory to anti-PD-L1 therapy (AT-3, B16 and 4T1), and evaluated the efficacy of the combinatorial therapeutic regimen, in situ immunomodulation (ISIM) comprised of intratumoral administration of Fms-like tyrosine kinase 3 receptor ligand (Flt3L) to mobilize cDC1s to the TME, local radiotherapy (RT) to promote immunogenic death of cancer cells and maturation of DCs, and peritumoral CD40/toll-like receptor 3 (TLR3) agonists administration to activate antigen-loaded cDC1s for priming and expansion of tumor-specific CD8+ T cells.ResultsIntratumoral administration of Flt3L increased the number of CD103+ DCs in the TME, and RT induced upregulation of CD40 and CD86 in the tumor-residing CD103+ DCs. In situ CD40/TLR3 stimulation facilitated trafficking of CD103+ DCs carrying tumor-associated antigens (TAA) to the tumor draining LN (TdLN), and generation of tumor-specific CD8+ T cells in TdLNs, indicating cross-presentation of TAA. Consequently, ISIM triggered infiltration of tumor-specific stem-like Tcf1+CD8+ T cells into the TME, mediated rapid regression of untreated distant and primary tumors, and rendered poorly T cell-infiltrated tumors responsive to PD-L1 blockade in multiple mouse tumor models. Moreover, T-cell receptor (TCR) sequencing of TILs revealed that ISIM facilitated the infiltration of novel clones in the TME. Importantly, serial ISIM further reshaped the TCR repertoires in the TME which had been destined to become resistant to anti-PD-L1 therapy, and rendered tumors continuously responsive to anti-PD-L1 therapy, resulting in durable complete responses and establishment of tumor-specific immunological memory.ConclusionsTaken together, ISIM not only increased CD8+ T-cell infiltration but also reshaped the intratumoral TCR repertoires. These findings provide insights into the utility of an in situ combinatorial immunotherapeutic regimen for overcoming resistance to anti-PD-L1 therapy due to tumor-mediated mechanisms of immune cell exclusion.AcknowledgementsWe thank the NIH Tetramer Core Facility (contract HHSN272201300006C) for provision of MHC-I tetramers, This work was supported by National Cancer Institute (NCI) grant P30CA016056 involving the use of Roswell Park’s Flow and Image Cytometry, Pathology Network, Bioinformatics, and Mouse Tumor Model Shared Resource. This work was supported by institutional funds from Roswell Park Comprehensive Cancer Center, the Melanoma Research Alliance (F. Ito), Uehara Memorial Foundation (T. Oba), National Cancer Institute (NCI) grant, K08CA197966 (F. Ito), R50CA211108 (H. Minderman), U24CA232979 (S. Liu) and R01CA172105 (S. Abrams).


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A480-A480
Author(s):  
Jonas Van Audenaerde ◽  
Elly Marcq ◽  
Bianca von Scheidt ◽  
Ashleigh Davey ◽  
Amanda Oliver ◽  
...  

BackgroundWith the poorest 5-year survival of all cancers, improving treatment for pancreatic cancer is one of the biggest challenges in cancer research. In this era of combination immunotherapies, we sought to explore the potential of combining both priming and activation of the immune system. To achieve this, we combined a CD40 agonist with interleukin-15 and tested its potential in pancreatic cancer.MethodsTwo different mouse models of pancreatic cancer were used to assess the potential of this combination regimen. Therefore, effects on tumour growth kinetics and survival were charted. Differential effects on immune signatures was investigated using RNA sequencing. Functional immune subset involvement was tested using different immune depletion experiments and multicolour flow cytometry in different relevant immune sites. Immune memory was checked using re-challenge experiments.ResultsWe demonstrated profound reduction in tumour growth and increased survival of mice with the majority of mice being cured when both agents were combined, including an unprecedented dose reduction of CD40 agonist without losing any efficacy (fig 1). RNA sequencing analysis showed involvement of natural killer cell and T cell mediated anti-tumour responses and the importance of antigen-presenting cell pathways. This combination resulted in enhanced infiltration of tumours by both cytotoxic T cells and natural killer cells, as well as a striking increase in the ratio of CD8+ T cells over T regulatory cells. We also observed a significant increase in numbers of dendritic cells in tumour draining lymph nodes, particularly CD103+ dendritic cells with cross-presentation potential. A critical role for CD8+ T cells and involvement of natural killer cells in the anti-tumour effect was highlighted. Importantly, strong immune memory was established, with an increase in memory CD8+ T cells only when both interleukin-15 and the CD40 agonist were combined.Abstract 453 Figure 1Tumour kinetics and survival in Panc02 (left) and KPC (right) pancreatic cancer mouse modelsConclusionsWe demonstrated profound synergistic anti-tumour effects upon combination of CD40 agonist and interleukin-15 treatment in mouse models of pancreatic cancer. This preclinical data supports initiation of a first-in-human clinical trial with this combination immunotherapy strategy in pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document