Rotational Stabilization of Cargo Container Slung Loads

2015 ◽  
Vol 60 (4) ◽  
pp. 1-13 ◽  
Author(s):  
Luigi Cicolani ◽  
Christina Ivler ◽  
Carl Ott ◽  
Reuben Raz ◽  
Aviv Rosen

The stabilization of “difficult” loads that become aerodynamically unstable at airspeeds well below the power-limited speed of the helicopter-load configuration has been studied since the 1960s. This paper looks at the possibility of stabilizing slung loads in forward flight by imposing a slow steady rotation in yaw (spin stabilization). Slow rotations of 100–150 deg/s suffice to suppress the pendulum motions of the load. A swivel is required at the hook, and only a few foot-pounds of yaw moment are needed to overcome swivel friction and impose the desired yaw rate. The approach is limited to single-point suspensions. A stabilizer design consisting of a one-shaft anemometer-like device with hemispherical cups at the ends was developed in wind tunnel tests. The shaft angle can be controlled to vary the applied yaw moment and allow feedback regulation of the load yaw rate. Flight tests with two cargo containers demonstrated that a simple linear control law with fixed gains was effective in maintaining the desired yaw rate in forward flight over the range of configurations of the test loads. Wind tunnel data were obtained at all stages of the development and testing and proved to be an accurate source of design data and an accurate predictor of performance in flight.

1982 ◽  
Author(s):  
G. WINCHENBACH ◽  
R. CHELEKIS ◽  
B. USELTON ◽  
W. HATHAWAY

1997 ◽  
Author(s):  
Charles Campbell ◽  
Jose Caram ◽  
Scott Berry ◽  
Michael DiFulvio ◽  
Tom Horvath ◽  
...  

Vehicles ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 127-144
Author(s):  
Andoni Medina ◽  
Guillermo Bistue ◽  
Angel Rubio

Direct Yaw Moment Control (DYC) is an effective way to alter the behaviour of electric cars with independent drives. Controlling the torque applied to each wheel can improve the handling performance of a vehicle making it safer and faster on a race track. The state-of-the-art literature covers the comparison of various controllers (PID, LPV, LQR, SMC, etc.) using ISO manoeuvres. However, a more advanced comparison of the important characteristics of the controllers’ performance is lacking, such as the robustness of the controllers under changes in the vehicle model, steering behaviour, use of the friction circle, and, ultimately, lap time on a track. In this study, we have compared the controllers according to some of the aforementioned parameters on a modelled race car. Interestingly, best lap times are not provided by perfect neutral or close-to-neutral behaviour of the vehicle, but rather by allowing certain deviations from the target yaw rate. In addition, a modified Proportional Integral Derivative (PID) controller showed that its performance is comparable to other more complex control techniques such as Model Predictive Control (MPC).


2009 ◽  
Vol 43 (39) ◽  
pp. 6238-6253 ◽  
Author(s):  
Elsa Aristodemou ◽  
Tom Bentham ◽  
Christopher Pain ◽  
Roy Colvile ◽  
Alan Robins ◽  
...  

1995 ◽  
Author(s):  
G. M. Le Good ◽  
J. P. Howell ◽  
M. A. Passmore ◽  
K. P. Garry

Sign in / Sign up

Export Citation Format

Share Document