scholarly journals Comparison of Typical Controllers for Direct Yaw Moment Control Applied on an Electric Race Car

Vehicles ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 127-144
Author(s):  
Andoni Medina ◽  
Guillermo Bistue ◽  
Angel Rubio

Direct Yaw Moment Control (DYC) is an effective way to alter the behaviour of electric cars with independent drives. Controlling the torque applied to each wheel can improve the handling performance of a vehicle making it safer and faster on a race track. The state-of-the-art literature covers the comparison of various controllers (PID, LPV, LQR, SMC, etc.) using ISO manoeuvres. However, a more advanced comparison of the important characteristics of the controllers’ performance is lacking, such as the robustness of the controllers under changes in the vehicle model, steering behaviour, use of the friction circle, and, ultimately, lap time on a track. In this study, we have compared the controllers according to some of the aforementioned parameters on a modelled race car. Interestingly, best lap times are not provided by perfect neutral or close-to-neutral behaviour of the vehicle, but rather by allowing certain deviations from the target yaw rate. In addition, a modified Proportional Integral Derivative (PID) controller showed that its performance is comparable to other more complex control techniques such as Model Predictive Control (MPC).

Author(s):  
Andoni Medina ◽  
Angel Rubio ◽  
Guillermo Bistue

Direct yaw moment control (DYC) is an effective way to alter the behaviour of electric cars with independent drives. Controlling the torque applied to each wheel can improve the handling performance of a vehicle making it safer andfaster on a race track. The state-of-the-art literature covers the comparison of various controllers (PID, LPV, LQR, SMC, etc.) using ISO manoeuvres. However, more advanced comparison on important characteristics of the controllers performance is missed, such as the robustness of the controllers under changes in the vehicle model, steering behaviour, use of the friction circle and, ultimately, lap time on a track. In this study, we have compared the controllers according to some of the aforementioned parameters on a modelled race car. Interestingly, best lap times are not provided by perfect neutral or close-to-neutral behaviour of the vehicle, but rather by allowing certain deviations from the target yaw rate. In addition, a modified PID controller showed that its performance is comparable to other more complex control techniques such as MPC.


2021 ◽  
Vol 29 (1) ◽  
pp. 124-139 ◽  
Author(s):  
Basilio Lenzo ◽  
Mattia Zanchetta ◽  
Aldo Sorniotti ◽  
Patrick Gruber ◽  
Wouter De Nijs

2010 ◽  
Vol 29-32 ◽  
pp. 1991-1996
Author(s):  
Ju Wei Li ◽  
Xiao Lin Cui

A direct yaw moment control (DYC) method based on optimal predictive method is proposed to achieve an external yaw moment which is as low as possible. This control method calculates the necessary moment according the vehicle condition, and then optimizes the distribution of drive/brake torque to achieve the necessary yaw moment considering the constraints of actuators. The effectiveness of the designed controller is investigated by simulations. The simulation results indicate that a satisfactory handling performance can be achieved when the proposed controller is applied.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chao Lu ◽  
Jing Yuan ◽  
Genlong Zha

This paper has investigated an integrated control of active front steering (AFS) and direct yaw-moment control (DYC) for vehicle systems. First of all, the desired yaw rate and sideslip angle are estimated by using a two-degree-of-freedom (2-DOF) model of the vehicle system. On this basis, the actual sideslip angle is estimated by means of an observer. Then, the sliding mode control (SMC) is developed for AFS and DYC, respectively, to guarantee that the actual yaw rate and the sideslip angle track their reference signals. Additionally, the disturbance observer (DOB) technique is introduced to further improve the control performance. Finally, the simulation results validate the superiority of the AFS and DYC integrated control by using CarSim software during the following conditions: double lane change and side wind disturbance.


Author(s):  
Avesta Goodarzi ◽  
Fereydoon Diba ◽  
Ebrahim Esmailzadeh

Basically, there are two main techniques to control the vehicle yaw moment. First method is the indirect yaw moment control, which works on the basis of active steering control (ASC). The second one being the direct yaw moment control (DYC), which is based on either the differential braking or the torque vectoring. An innovative idea for the direct yaw moment control is introduced by using an active controller system to supervise the lateral dynamics of vehicle and perform as an active yaw moment control system, denoted as the stabilizer pendulum system (SPS). This idea has further been developed, analyzed, and implemented in a standalone direct yaw moment control system, as well as, in an integrated vehicle dynamic control system with a differential braking yaw moment controller. The effectiveness of SPS has been evaluated by model simulation, which illustrates its superior performance especially on low friction roads.


2018 ◽  
Vol 41 (9) ◽  
pp. 2428-2440 ◽  
Author(s):  
Jiaxu Zhang ◽  
Jing Li

This paper presents an integrated vehicle chassis control (IVCC) strategy to improve vehicle handling and stability by coordinating active front steering (AFS) and direct yaw moment control (DYC) in a hierarchical way. In high-level control, the corrective yaw moment is calculated by the fast terminal sliding mode control (FTSMC) method, which may improve the transient response of the system, and a non-linear disturbance observer (NDO) is used to estimate and compensate for the model uncertainty and external disturbance to suppress the chattering of FTSMC. In low-level control, the null-space-based control reallocation method and inverse tyre model are utilized to transform the corrective yaw moment to the desired longitudinal slips and the steer angle increment of front wheels by considering the constraints of actuators and friction ellipse of each wheel. Finally, the performance of the proposed control strategy is verified through simulations of various manoeuvres based on vehicle dynamic software CarSim.


Sign in / Sign up

Export Citation Format

Share Document