scholarly journals An Interesting Property of O-Antigen Polysaccharide in Lipopolysaccharide: Cross-Talk between Lipopolysaccharides of Helicobacter pylori and Host Cells through Lewis Blood Group Antigens.

2002 ◽  
Vol 14 (76) ◽  
pp. 105-114 ◽  
Author(s):  
Ken-ichi Amano
1996 ◽  
Vol 64 (6) ◽  
pp. 2031-2040 ◽  
Author(s):  
B J Appelmelk ◽  
I Simoons-Smit ◽  
R Negrini ◽  
A P Moran ◽  
G O Aspinall ◽  
...  

2001 ◽  
Vol 79 (4) ◽  
pp. 449-459 ◽  
Author(s):  
Mario A Monteiro ◽  
Frank St Michael ◽  
David A Rasko ◽  
Diane E Taylor ◽  
J Wayne Conlan ◽  
...  

Helicobacter pylori is a widespread Gram-negative bacterium responsible for the onset of various gastric pathologies and cancers in humans. A familiar trait of H. pylori is the production of cell-surface lipopolysaccharides (LPSs; O-chain [Formula: see text] core [Formula: see text] lipid A) with O-chain structures analogous to some mammalian histo-blood-group antigens, those being the Lewis determinants (Lea, Leb, Lex, sialyl Lex, Ley) and blood groups A and linear B. Some of these LPS antigens have been implicated as autoimmune, adhesion, and colonization components of H. pylori pathogenic mechanisms. This article describes the chemical structures of LPSs from H. pylori isolated from subjects with no overt signs of disease. Experimental data from chemical- and spectroscopic-based studies unanimously showed that these H. pylori manufactured extended heptoglycans composed of 2- and 3-linked D-glycero-α-D-manno-heptopyranose units and did not express any blood-group O-antigen chains. The fact that another H. pylori isolate with a similar LPS structure was shown to be capable of colonizing mice indicates that H. pylori histo-blood-group structures are not an absolute prerequisite for colonization in the murine model also. The absence of O-chains with histo-blood groups may cause H. pylori to become inept in exciting an immune response. Additionally, the presence of elongated heptoglycans may impede exposure of disease-causing outer-membrane antigens. These factors may render such H. pylori incapable of creating exogenous contacts essential for pathogenesis of severe gastroduodenal diseases and suggest that histo-blood groups in the LPS may indeed play a role in inducing a more severe H. pylori pathology.Key words: lipopolysaccharide, carbohydrates, glycobiology, Helicobacter pylori, histo-blood groups.


1995 ◽  
Vol 172 (6) ◽  
pp. 1616-1619 ◽  
Author(s):  
E. Hilton ◽  
V. Chandrasekaran ◽  
P. Rindos ◽  
H. D. Isenberg

Helicobacter ◽  
2004 ◽  
Vol 9 (4) ◽  
pp. 324-329 ◽  
Author(s):  
Dietrich Rothenbacher ◽  
Maria Weyermann ◽  
Gunter Bode ◽  
Murrat Kulaksiz ◽  
Bernd Stahl ◽  
...  

Author(s):  
Ming Tan ◽  
Xi Jiang

Noroviruses (NoVs) and rotaviruses (RVs), the two most important causes of viral acute gastroenteritis, are found to recognise histo-blood group antigens (HBGAs) as receptors or ligands for attachment. Human HBGAs are highly polymorphic containing ABO, secretor and Lewis antigens. In addition, both NoVs and RVs are highly diverse in how they recognise these HBGAs. Structural analysis of the HBGA-binding interfaces of NoVs revealed a conserved central binding pocket (CBP) interacting with a common major binding saccharide (MaBS) of HBGAs and a variable surrounding region interacting with additional minor binding saccharides. The conserved CBP indicates a strong selection of NoVs by the host HBGAs, whereas the variable surrounding region explains the diverse recognition patterns of different HBGAs by NoVs and RVs as functional adaptations of the viruses to human HBGAs. Diverse recognition of HBGAs has also been found in bacterial pathogenHelicobacter pylori. Thus, exploratory research into whether such diverse recognitions also occur for other viral and bacterial pathogens that recognise HBGAs is warranted.


2005 ◽  
Vol 83 (5) ◽  
pp. 589-596 ◽  
Author(s):  
Eleonora Altman ◽  
Blair A Harrison ◽  
Tomoko Hirama ◽  
Vandana Chandan ◽  
Rebecca To ◽  
...  

The cell envelope of Helicobacter pylori contains lipopolysaccharide (LPS), the O-chain of which expresses type 2 Lexand Leyblood group antigens, which mimic human gastric mucosal cell-surface glycoconjugates and may contribute to the survival of H. pylori in gastric mucosa. Here we describe the generation of monoclonal antibodies specific for Lexand Leyblood group determinants and the characterization of their binding properties using purified, structurally defined H. pylori LPS, synthetic glycoconjugates, and H. pylori cells. Analysis of oligosaccharide binding by SPR provided a rapid and reliable means for characterization of antibody affinities. One of the antibodies, anti-Lex, was of IgG3 subclass and had superior binding characteristics as compared with the commercially available anti-LexIgM. These antibodies could have potential in the immunodiagnosis of certain types of cancer, in serotyping of H. pylori isolates, and in structure–function studies.Key words: Helicobacter pylori, lipopolysaccharide, monoclonal antibodies, Lewis determinants, immunodiagnosis.


Genetika ◽  
2020 ◽  
Vol 52 (1) ◽  
pp. 127-136
Author(s):  
Ivan Busarcevic ◽  
Svetlana Vojvodic ◽  
Una Vojvodic

The classical paradigm of autoimmune pathogenesis involving specific genetic makeup and exposure to environmental triggers has been challenged recently by the addition of a third element, the loss of intestinal barrier function. Regardless of HLA B27 phenotype or gastrointestinal symptoms, evidence of ileitis, ileocolitis or colitis exists in patients with spondyloarthropathy. The FUT2 secretory gene is a strong candidate for Crohn's susceptibility by shaping the functional states of mucosal microbiota and may thus have influence on the release of zonulin, the main regulator of gut permeability. Gram negative bacteria precipitate and may be involved in the pathogenesis of spondyloarthropathies. Susceptibility to many infectious agents is associated with ABO blood group or secretor state. Patients who cannot secrete ABO and Lewis blood group antigens into body fluids, an ability controlled by a single gene on chromosome 19, are known to be at increased risk of certain autoimmune diseases associated with human leukocyte antigen (HLA) markers. Lewis (Le) blood group phenotype can be used to infer secretor status. The objective of this study was to determine the distribution of secretor state and Lewis blood group phenotype in patients with seronegative spondyloarthropathies and healthy control subjects. Hundred and ten (110) patients with seronegative spondyloarthropathies (58 females and 52 males) and 103 control (74 males and 29 females) subjects participated in this study. Samples of saliva and blood were subjected to haemagglutination inhibition tests for determination of secretor status and Lewis phenotype. A total of 92(84%) patients and 92 (89%) control subjects were secretors while 18 (16%) patients and 11 (11%) control subjects were non-secretors. There was no statistically significant difference (?2 1,461 p<0,05 and degrees of freedom 1) in distribution of secretor status in comparison to seronegative spondyloarthropathies by comparing two observed populations. Seven patients had modified (reduced) expression of Lewis b antigen on their erythrocytes. Reduction of Lewis b antigen expression was not observed on erythrocytes of healthy subjects. Reduced expression of Lewis b antigen could be a consequence of the inflammatory process within the gut and it also suggests several pathogenic mechanisms which may be relevant to the synthesis of Lewis antigens inside the gut or its absorption on erythrocytes in patients with spondyloarthropathy.


2013 ◽  
Vol 60 (2) ◽  
Author(s):  
Małgorzata Borzym-Kluczyk ◽  
Iwona Radziejewska

Sialic acid and sialyl Lewisa/x are found on N- and O-glycans of many human malignant cells. Carbohydrate antigens can be used as tumor markers, and an increase of their levels in cancer cells is associated with tumor progression. The aim of this study was to assess the level of some Lewis blood group antigens on glycoproteins in tumor (cancer tissue), intermediate zone (adjacent to tumor tissue), and normal renal cortex/medulla (uninvolved by tumor). The study was performed on tissues taken from 30 patients. Relative amounts of sugar structures of proteins with molecular masses above 30 kDa were determined by ELISA-like test with biotinylated lectins: MAA (Maackia amurensis), SNA (Sambucus nigra), and monoclonal antibodies anti-sialyl Lewisa/x.∙ Higher expression of all examined structures was revealed in cancer tissues. Significant increases were observed for sialic acid linked α 2-3 in cancer tissues when compared to healthy ones and also among intermediate and healthy tissues. The sialic acid linked α 2-6 and sialyl Lewisx structures were significantly increased in cancerous cells when compared to normal and intermediate renal tissue. In case of sialyl Lewisa antigen, a significant difference was discovered between normal and intermediate tissue. Our results confirm that the examined Lewis antigens can be involved in tumor development. Their increase in cancer tissues can suggest their specific role in the process.


Sign in / Sign up

Export Citation Format

Share Document