scholarly journals Abnormalities of the First Three Steps of Gait Initiation in Patients with Parkinson's Disease with Freezing of Gait

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Yohei Okada ◽  
Takahiko Fukumoto ◽  
Katsuhiko Takatori ◽  
Koji Nagino ◽  
Koichi Hiraoka

The purpose of this study was to investigate abnormalities of the first three steps of gait initiation in patients with Parkinson's disease (PD) with freezing of gait (FOG). Ten PD patients with FOG and 10 age-matched healthy controls performed self-generated gait initiation. The center of pressure (COP), heel contact positions, and spatiotemporal parameters were estimated from the vertical pressures on the surface of the force platform. The initial swing side of gait initiation was consistent among the trials in healthy controls but not among the trials in PD patients. The COP and the heel contact position deviated to the initial swing side during the first step, and the COP passed medial to each heel contact position during the first two steps in PD patients. Medial deviation of the COP from the first heel contact position had significant correlation with FOG questionnaire item 5. These findings indicate that weight shifting between the legs is abnormal and that medial deviation of the COP from the first heel contact position sensitively reflects the severity of FOG during the first three steps of gait initiation in PD patients with FOG.

2019 ◽  
Vol 35 (6) ◽  
pp. 393-400
Author(s):  
Aisha Chen ◽  
Sandhya Selvaraj ◽  
Vennila Krishnan ◽  
Shadnaz Asgari

Accurate and reliable detection of the onset of gait initiation is essential for the correct assessment of gait. Thus, this study was aimed at evaluation of the reliability and accuracy of 3 different center of pressure–based gait onset detection algorithms: A displacement baseline–based algorithm (method 1), a velocity baseline–based algorithm (method 2), and a velocity extrema–based algorithm (method 3). The center of pressure signal was obtained during 10 gait initiation trials from 16 healthy participants and 3 participants with Parkinson’s disease. Intrasession and absolute reliability of each algorithm was assessed using the intraclass correlation coefficient and the coefficient of variation of center of pressure displacement during the postural phase of gait initiation. The accuracy was evaluated using the time error of the detected onset by each algorithm relative to that of visual inspection. The authors’ results revealed that although all 3 algorithms had high to very high intrasession reliabilities in both healthy subjects and subjects with Parkinson’s disease, methods 2 and 3 showed significantly better absolute reliability than method 1 in healthy controls (P = .001). Furthermore, method 2 outperformed the other 2 algorithms in both healthy subjects and subjects with Parkinson’s disease with an overall accuracy of 0.80. Based on these results, the authors recommend using method 2 for accurate and reliable gait onset detection.


2021 ◽  
pp. 1-13
Author(s):  
Matthew N. Petrucci ◽  
Sommer Amundsen Huffmaster ◽  
Jae Woo Chung ◽  
Elizabeth T. Hsiao-Wecksler ◽  
Colum D. MacKinnon

Background: An external cue can markedly improve gait initiation in people with Parkinson’s disease (PD) and is often used to overcome freezing of gait (FOG). It is unknown if the effects of external cueing are comparable if the imperative stimulus is triggered by the person receiving the cue (self-triggered) or an external source. Objective: Two experiments were conducted to compare the effects of self- versus externally triggered cueing on anticipatory postural adjustments (APAs) during gait initiation in people with PD. Methods: In experiment 1, 10 individuals with PD and FOG initiated gait without a cue or in response to a stimulus triggered by the experimenter or by the participant. Experiment 2 compared self- versus externally triggered cueing across three groups: healthy young adults (n = 16), healthy older adults (n = 11), and a group with PD (n = 10). Results: Experiment 1: Externally triggered cues significantly increased APA magnitudes compared to uncued stepping, but not when the same cue was self-triggered. Experiment 2: APAs were not significantly improved with a self-triggered cue compared to un-cued stepping in both the PD and healthy older adult groups, but the young adults showed a significant facilitation of APA magnitude. Conclusion: The effectiveness of an external cue on gait initiation in people with PD and older adults is critically dependent upon whether the source of the trigger is endogenous (self-produced) or exogenous (externally generated). These results may explain why cueing interventions that rely upon self-triggering of the stimulus are often ineffective in people with PD.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Griet Vervoort ◽  
Evelien Nackaerts ◽  
Farshid Mohammadi ◽  
Elke Heremans ◽  
Sabine Verschueren ◽  
...  

This exploratory study aimed to identify which aspects of postural control are able to distinguish between subgroups of patients with Parkinson’s disease (PD) and controls. Balance was tested using static and dynamic posturography. Freezers (n=9), nonfreezers (n=10), and controls (n=10) stood on a movable force platform and performed 3 randomly assigned tests: (1) sensory organization test (SOT) to evaluate the effective use of sensory information, (2) motor control test (MCT) to assess automatic postural reactions in response to platform perturbations, and (3) rhythmic weight shift test (RWS) to evaluate the ability to voluntarily move the center of gravity (COG) mediolaterally and anterior-posteriorly (AP). The respective outcome measures were equilibrium and postural strategy scores, response strength and amplitude of weight shift. Patients were in the “on” phase of the medication cycle. In general, freezers performed similarly on SOT and MCT compared to nonfreezers. Freezers showed an intact postural strategy during sensory manipulations and an appropriate response to external perturbations. However, during voluntary weight shifting, freezers showed poorer directional control compared to nonfreezers and controls. This suggests that freezers have adequate automatic postural control and sensory integration abilities in quiet stance, but show specific directional control deficits when weight shifting is voluntary.


2014 ◽  
Vol 125 (8) ◽  
pp. 1675-1681 ◽  
Author(s):  
Arnaud Delval ◽  
Caroline Moreau ◽  
Séverine Bleuse ◽  
Céline Tard ◽  
Gilles Ryckewaert ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Arnaud Delafontaine ◽  
Paul Fourcade ◽  
Ahmed Zemouri ◽  
D. G. Diakhaté ◽  
Gabriel Saiydoun ◽  
...  

A complete lack of bilateral activation of tibialis anterior (TA) during gait initiation (GI), along with bradykinetic anticipatory postural adjustments (APAs), often occurs in patients with Parkinson’s disease (PD) in their OFF-medication state. Functional electrical stimulation (FES) is a non-pharmacological method frequently used in neurorehabilitation to optimize the effect of L-DOPA on locomotor function in this population. The present study tested the potential of bilateral application of FES on TA to improve GI in PD patients. Fourteen PD patients (OFF-medication state, Hoehn and Yahr state 2-3) participated in this study. They performed series of 10 GI trials on a force-plate under the following experimental conditions: (1) GI without FES (control group), (2) GI with 2Hz-FES (considered as a very low FES frequency condition without biomechanical effect; placebo group) and (3) GI with 40Hz-FES (test group). In (2) and (3), FES was applied bilaterally to the TA during APAs (300 mA intensity/300 μs pulse width). Main results showed that the peak of anticipatory backward center of pressure shift, the forward center of mass (COM) velocity and shift at foot off were significantly larger in the 40 Hz FES condition than in the control condition, while the duration of step execution was significantly shorter. In contrast, the capacity of participants to brake the fall of their COM remained unchanged across conditions. Globally taken, these results suggest that acute application of 40-Hz FES to the TA may improve the capacity of PD patients to generate APAs during GI, without altering their balance capacity. Future studies are required before considering that TA FES application might be a valuable tool to improve GI in PD patients and be relevant to optimize the effects of L-DOPA medication on locomotor function.


2021 ◽  
pp. 1-14
Author(s):  
Bauke Wybren Dijkstra ◽  
Moran Gilat ◽  
L. Eduardo Cofré Lizama ◽  
Martina Mancini ◽  
Bruno Bergmans ◽  
...  

Background: People with Parkinson’s disease and freezing of gait (FOG; freezers) suffer from pronounced postural instability. However, the relationship between these phenomena remains unclear and has mostly been tested in paradigms requiring step generation. Objective: To determine if freezing-related dynamic balance deficits are present during a task without stepping and determine the influence of dopaminergic medication on dynamic balance control. Methods: Twenty-two freezers, 16 non-freezers, and 20 healthy age-matched controls performed mediolateral weight-shifts at increasing frequencies when following a visual target projected on a screen (MELBA task). The amplitude and phase shift differences between center of mass and target motion were measured. Balance scores (Mini-BESTest), 360° turning speed and the freezing ratio were also measured. Subjects with Parkinson’s disease were tested ON and partial OFF (overnight withdrawal) dopaminergic medication. Results: Freezers had comparable turning speed and balance scores to non-freezers and took more levodopa. Freezers produced hypokinetic weight-shift amplitudes throughout the MELBA task compared to non-freezers (p = 0.002), which were already present at task onset (p < 0.001). Freezers also displayed an earlier weight-shift breakdown than controls when OFF-medication (p = 0.008). Medication improved mediolateral weight-shifting in freezers and non-freezers. Freezers decreased their freezing ratio in response to medication. Conclusion: Hypokinetic weight-shifting proved a marked postural control deficit in freezers, while balance scores and turning speed were similar to non-freezers. Both weight-shift amplitudes and the freezing ratio were responsive to medication in freezers, suggesting axial motor vigor is levodopa-responsive. Future work needs to test whether weight-shifting and freezing severity can be further ameliorated through training.


2021 ◽  
pp. 1-12
Author(s):  
Anjanibhargavi Ragothaman ◽  
Oscar Miranda-Dominguez ◽  
Barbara H. Brumbach ◽  
Andrew Giritharan ◽  
Damien A. Fair ◽  
...  

Background: Instrumented measures of balance and gait measure more specific balance and gait impairments than clinical rating scales. No prior studies have used objective balance/gait measures to examine associations with ventricular and brain volumes in people with Parkinson’s disease (PD). Objective: To test the hypothesis that larger ventricular and smaller cortical and subcortical volumes are associated with impaired balance and gait in people with PD. Methods: Regional volumes from structural brain images were included from 96 PD and 50 control subjects. Wearable inertial sensors quantified gait, anticipatory postural adjustments prior to step initiation (APAs), postural responses to a manual push, and standing postural sway on a foam surface. Multiple linear regression models assessed the relationship between brain volumes and balance/gait and their interactions in PD and controls, controlling for sex, age and corrected for multiple comparisons. Results: Smaller brainstem and subcortical gray matter volumes were associated with larger sway area in people with PD, but not healthy controls. In contrast, larger ventricle volume was associated with smaller APAs in healthy controls, but not in people with PD. A sub-analysis in PD showed significant interactions between freezers and non-freezers, in several subcortical areas with stride time variability, gait speed and step initiation. Conclusion: Our models indicate that smaller subcortical and brainstem volumes may be indicators of standing balance dysfunction in people with PD whereas enlarged ventricles may be related to step initiation difficulties in healthy aging. Also, multiple subcortical region atrophy may be associated with freezing of gait in PD.


Sign in / Sign up

Export Citation Format

Share Document