anticipatory postural adjustments
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 51)

H-INDEX

41
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Roberto Esposti ◽  
Silvia M. Marchese ◽  
Veronica Farinelli ◽  
Francesco Bolzoni ◽  
Paolo Cavallari

Evidence shows that the postural and focal components within the voluntary motor command are functionally unique. In 2015, we reported that the supplementary motor area (SMA) processes Anticipatory Postural Adjustments (APAs) separately from the command to focal muscles, so we are still searching for a hierarchically higher area able to process both components. Among these, the parietal operculum (PO) seemed to be a good candidate, as it is a hub integrating both sensory and motor streams. However, in 2019, we reported that transcranial Direct Current Stimulation (tDCS), applied with an active electrode on the PO contralateral to the moving segment vs. a larger reference electrode on the opposite forehead, did not affect intra-limb APAs associated to brisk flexions of the index-finger. Nevertheless, literature reports that two active electrodes of opposite polarities, one on each PO (dual-hemisphere, dh-tDCS), elicit stronger effects than the “active vs. reference” arrangement. Thus, in the present study, the same intra-limb APAs were recorded before, during and after dh-tDCS on PO. Twenty right-handed subjects were tested, 10 for each polarity: anode on the left vs. cathode on the right, and vice versa. Again, dh-tDCS was ineffective on APA amplitude and timing, as well as on prime mover recruitment and index-finger kinematics. These results confirm the conclusion that PO does not take part in intra-limb APA control. Therefore, our search for an area in which the motor command to prime mover and postural muscles are still processed together will have to address other structures.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8244
Author(s):  
Yuri Russo ◽  
Dragan Marinkovic ◽  
Borislav Obradovic ◽  
Giuseppe Vannozzi

Lateral stepping is a motor task that is widely used in everyday life to modify the base of support, change direction, and avoid obstacles. Anticipatory Postural Adjustments (APAs) are often analyzed to describe postural preparation prior to forward stepping, however, little is known about lateral stepping. The aim of the study is to characterize APAs preceding lateral steps and to investigate how these are affected by footwear and lower limb preference. Twenty-two healthy young participants performed a lateral step using both their preferred and non-preferred leg in both barefoot and shod conditions. APA spatiotemporal parameters (size, duration, and speed) along both the anteroposterior and mediolateral axes were obtained through force plate data. APAs preceding lateral stepping showed typical patterns both along the anteroposterior and mediolateral axis. RM-ANOVA highlighted a significant effect of footwear only on medio-lateral APAs amplitude (p = 0.008) and velocity (p = 0.037). No differences were found for the limb preference. APAs in lateral stepping presented consistent features in the sagittal component, regardless of limb/shoe factors. Interestingly, the study observed that footwear induced an increase in the medio-lateral APAs size and velocity, highlighting the importance of including this factor when studying lateral stepping.


2021 ◽  
pp. 1-13
Author(s):  
Matthew N. Petrucci ◽  
Sommer Amundsen Huffmaster ◽  
Jae Woo Chung ◽  
Elizabeth T. Hsiao-Wecksler ◽  
Colum D. MacKinnon

Background: An external cue can markedly improve gait initiation in people with Parkinson’s disease (PD) and is often used to overcome freezing of gait (FOG). It is unknown if the effects of external cueing are comparable if the imperative stimulus is triggered by the person receiving the cue (self-triggered) or an external source. Objective: Two experiments were conducted to compare the effects of self- versus externally triggered cueing on anticipatory postural adjustments (APAs) during gait initiation in people with PD. Methods: In experiment 1, 10 individuals with PD and FOG initiated gait without a cue or in response to a stimulus triggered by the experimenter or by the participant. Experiment 2 compared self- versus externally triggered cueing across three groups: healthy young adults (n = 16), healthy older adults (n = 11), and a group with PD (n = 10). Results: Experiment 1: Externally triggered cues significantly increased APA magnitudes compared to uncued stepping, but not when the same cue was self-triggered. Experiment 2: APAs were not significantly improved with a self-triggered cue compared to un-cued stepping in both the PD and healthy older adult groups, but the young adults showed a significant facilitation of APA magnitude. Conclusion: The effectiveness of an external cue on gait initiation in people with PD and older adults is critically dependent upon whether the source of the trigger is endogenous (self-produced) or exogenous (externally generated). These results may explain why cueing interventions that rely upon self-triggering of the stimulus are often ineffective in people with PD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Amiri Matsumoto ◽  
Nan Liang ◽  
Hajime Ueda ◽  
Keisuke Irie

Objective: To investigate whether the changes in the corticospinal excitability contribute to the anticipatory postural adjustments (APAs) in the lower limb muscles when performing the ballistic upper limb movement of the dart throwing.Methods: We examined the primary motor cortex (M1) excitability of the lower limb muscles [tibialis anterior (TA) and soleus (SOL) muscles] during the APA phase by using transcranial magnetic stimulation (TMS) in the healthy volunteers. The surface electromyography (EMG) of anterior deltoid, triceps brachii, biceps brachii, TA, and SOL muscles was recorded and the motor evoked potential (MEP) to TMS was recorded in the TA muscle along with the SOL muscle. TMS at the hotspot of the TA muscle was applied at the timings immediately prior to the TA onset. The kinematic parameters including the three-dimensional motion analysis and center of pressure (COP) during the dart throwing were also assessed.Results: The changes in COP and EMG of the TA muscle occurred preceding the dart throwing, which involved a slight elbow flexion followed by an extension. The correlation analysis revealed that the onset of the TA muscle was related to the COP change and the elbow joint flexion. The MEP amplitude in the TA muscle, but not that in the SOL muscle, significantly increased immediately prior to the EMG burst (100, 50, and 0 ms prior to the TA onset).Conclusion: Our findings demonstrate that the corticospinal excitability of the TA muscle increases prior to the ballistic upper limb movement of the dart throwing, suggesting that the corticospinal pathway contributes to the APA in the lower limb in a muscle-specific manner.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jana Kimijanová ◽  
Diana Bzdúšková ◽  
Zuzana Hirjaková ◽  
František Hlavačka

Gait initiation (GI) challenges the balance control system, especially in the elderly. To date, however, there is no consensus about the age effect on the anticipatory postural adjustments (APAs). There is also a lack of research on APAs in older adults after proprioceptive perturbation in the sagittal plane. This study aimed to compare the ability of young and older participants to generate APAs in response to the vibratory-induced perturbation delivered immediately before GI. Twenty-two young and 22 older adults performed a series of GI trials: (1) without previous vibration; (2) preceded by the vibration of triceps surae muscles; and (3) preceded by the vibration of tibialis anterior muscles. The APAs magnitude, velocity, time-to-peak, and duration were extracted from the center of pressure displacement in the sagittal plane. Young participants significantly modified their APAs during GI, whereas older adults did not markedly change their APAs when the body vertical was shifted neither backward nor forward. Significant age-related declines in APAs were observed also regardless of the altered proprioception.The results show that young adults actively responded to the altered proprioception from lower leg muscles and sensitively scaled APAs according to the actual position of the body verticality. Contrary, older adults were unable to adjust their postural responses indicating that the challenging transition from standing to walking probably requires higher reliance on the visual input. The understanding of age-related differences in APAs may help to design training programs for the elderly specifically targeted to improve balance control in different sensory conditions, particularly during gait initiation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Veronica Farinelli ◽  
Francesco Bolzoni ◽  
Silvia Maria Marchese ◽  
Roberto Esposti ◽  
Paolo Cavallari

Anticipatory postural adjustments (APAs) are the coordinated muscular activities that precede the voluntary movements to counteract the associated postural perturbations. Many studies about gait initiation call APAs those activities that precede the heel-off of the leading foot, thus taking heel-off as the onset of voluntary movement. In particular, leg muscles drive the center of pressure (CoP) both laterally, to shift the body weight over the trailing foot and backward, to create a disequilibrium torque pushing forward the center of mass (CoM). However, since subjects want to propel their body rather than lift their foot, the onset of gait should be the CoM displacement, which starts with the backward CoP shift. If so, the leg muscles driving such a shift are the prime movers. Moreover, since the disequilibrium torque is mechanically equivalent to a forward force acting at the pelvis level, APAs should be required to link the body segments to the pelvis: distributing such concentrated force throughout the body would make all segments move homogeneously. In the aim of testing this hypothesis, we analyzed gait initiation in 15 right-footed healthy subjects, searching for activities in trunk muscles that precede the onset of the backward CoP shift. Subjects stood on a force plate for about 10 s and then started walking at their natural speed. A minimum of 10 trials were collected. A force plate measured the CoP position while wireless probes recorded the electromyographic activities. Recordings ascertained that at gait onset APAs develop in trunk muscles. On the right side, Rectus Abdominis and Obliquus Abdominis were activated in 11 and 13 subjects, respectively, starting on average 33 and 54 ms before the CoP shift; Erector Spinae (ES) at L2 and T3 levels was instead inhibited (9 and 7 subjects, 104 and 120 ms). On the contralateral side, the same muscles showed excitatory APAs (abdominals in 11 and 12 subjects, 27 and 82 ms; ES in 10 and 7 subjects, 75 and 32 ms). The results of this study provide a novel framework for distinguishing postural from voluntary actions, which may be relevant for the diagnosis and rehabilitation of gait disorders.


2021 ◽  
Vol 13 ◽  
Author(s):  
Rebecca S. Rowland ◽  
Ned Jenkinson ◽  
Shin-Yi Chiou

Anticipatory postural adjustments (APAs) are a feedforward mechanism for the maintenance of postural stability and are delayed in old adults. We previously showed in young adults that APAs of the trunk induced by a fast shoulder movement were mediated, at least in part, by a cortical mechanism. However, it remains unclear the relationship between delayed APAs and motor cortical excitability in ageing. Using transcranial magnetic stimulation we examined motor evoked potentials (MEPs) of the erector spinae (ES) muscles in healthy young and old adults prior to a fast shoulder flexion task. A recognition reaction time (RRT) paradigm was used where participants responded to a visual stimulus by flexing their shoulders bilaterally as fast as possible. The activity of bilateral anterior deltoid (AD) and ES muscles was recorded using electromyography (EMG). The onset of AD and ES EMG was measured to represent RRT and APAs, respectively. We found increases in amplitudes of ES MEPs at 40 ms than 50 ms prior to the EMG onset of the AD in both groups. The amplitude of ES MEPs at 40 ms prior to the onset of AD EMG correlated with the onset of ES activity counterbalancing the perturbation induced by the shoulder task in the elderly participants only. Our findings suggest that timing of increasing corticospinal excitability prior to a self-paced perturbation becomes more relevant with ageing in modulating postural control of the trunk.


Geriatrics ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 72
Author(s):  
Julien Bourrelier ◽  
Lilian Fautrelle ◽  
Etienne Haratyk ◽  
Patrick Manckoundia ◽  
Frédéric Mérienne ◽  
...  

Background: Postural activities involved in balance control integrate the anticipatory postural adjustments (APA) that stabilize balance and posture, facilitating arm movements and walking initiation and allowing an optimal coordination between posture and movement. Several studies reported the significant benefits of virtual reality (VR) exercises in frail older adults to decrease the anxiety of falling and to induce improvements in behavioural and cognitive abilities in rehabilitation processes. The aim of this study was thus to test the efficiency of a VR system on the enhancement of the APA period, compared to the use of a Nintendo Wii system. Methods: Frail older adults (n = 37) were included in this study who were randomized and divided into a VR exercises group (VR group) or a control group using the Nintendo Wii system (CTRL group). Finally, 22 patients were included in the data treatment. APA were studied through muscular activation timings measured with electromyographic activities. The functional reach test, the gait speed, and the time up and go were also evaluated before and after a 3-week training phase. Results and discussion: As the main results, the training phase with VR improved the APA and the functional reach test score along the antero-posterior axis. Together, these results highlight the ability of a VR training phase to induce neuromuscular adaptations during the APA period in frail older adults. Then, it underlines the effective transfer from learning carried out during the VR training movements to control balance abilities in a more daily life context.


2021 ◽  
Vol 15 ◽  
Author(s):  
Arnaud Delafontaine ◽  
Paul Fourcade ◽  
Ahmed Zemouri ◽  
D. G. Diakhaté ◽  
Gabriel Saiydoun ◽  
...  

A complete lack of bilateral activation of tibialis anterior (TA) during gait initiation (GI), along with bradykinetic anticipatory postural adjustments (APAs), often occurs in patients with Parkinson’s disease (PD) in their OFF-medication state. Functional electrical stimulation (FES) is a non-pharmacological method frequently used in neurorehabilitation to optimize the effect of L-DOPA on locomotor function in this population. The present study tested the potential of bilateral application of FES on TA to improve GI in PD patients. Fourteen PD patients (OFF-medication state, Hoehn and Yahr state 2-3) participated in this study. They performed series of 10 GI trials on a force-plate under the following experimental conditions: (1) GI without FES (control group), (2) GI with 2Hz-FES (considered as a very low FES frequency condition without biomechanical effect; placebo group) and (3) GI with 40Hz-FES (test group). In (2) and (3), FES was applied bilaterally to the TA during APAs (300 mA intensity/300 μs pulse width). Main results showed that the peak of anticipatory backward center of pressure shift, the forward center of mass (COM) velocity and shift at foot off were significantly larger in the 40 Hz FES condition than in the control condition, while the duration of step execution was significantly shorter. In contrast, the capacity of participants to brake the fall of their COM remained unchanged across conditions. Globally taken, these results suggest that acute application of 40-Hz FES to the TA may improve the capacity of PD patients to generate APAs during GI, without altering their balance capacity. Future studies are required before considering that TA FES application might be a valuable tool to improve GI in PD patients and be relevant to optimize the effects of L-DOPA medication on locomotor function.


Sign in / Sign up

Export Citation Format

Share Document