scholarly journals Assessing the Racial Differences in Q Angle Measurements in Relevance to Articular Cartilage of the Femoral Condyle: A Retrospective Ultrasound Study

2021 ◽  
Vol 39 (6) ◽  
pp. 1776-1781
Author(s):  
Ramada R Khasawneh ◽  
Fatimah A Almahasneh ◽  
Ejlal Abu-El-Rub
2018 ◽  
Vol 6 (6_suppl3) ◽  
pp. 2325967118S0005 ◽  
Author(s):  
Gabriella Bucci ◽  
Michael Begg ◽  
Kevin Pillifant ◽  
Steven B Singleton

Background: A relatively new technology for the treatment of high grade articular cartilage lesions is the implantation of particulated articular cartilage obtained from a juvenile allograft donor (PJAC).1-2 Previous studies have reported the ability of juvenile chondrocytes to migrate from cartilage explants after being secured in a cartilage defect.3 There is little in the literature to use as a reference with respect to the use of PJAC for high grade articular cartilage lesion of the lateral femoral condyle after a failure of treatment with a microfracture in the high level athlete. Objective: The aim of this report is to describe the technique of PJAC transplantation for the treatment of chondral lesions of the lateral femoral condyle and to report the short term outcomes in the high performance athlete. Methods: We present a case report of two patients who were treated in our clinic in December 2014. Case 1: 16 year old female Division 1 university soccer player, who one year prior to our index surgery underwent microfractures of a symptomatic lateral femoral condyle articular cartilage lesion without relief. Cae 2: 29 year old male professional tennis player (case 2) with a recurrent, symptomatic chondral defect on the lateral femoral condyle. The player had undergone multiple arthroscopic procedures on the same knee following an injury sustained while playing in the Australian Open, including a surgery 8 months prior to our index operation that had included lateral meniscal tear repair and microfractures. PJAC procedure consists of a minimal debridement and chondroplasty, performed arthroscopically. For these central lateral femoral condyle lesions, a mini-arthrotomy is created along the lateral parapatellar longitudinal axis over a length of about 3 cm. With the chondral defect localized and prepared, a thin fresh layer of fibrin glue is then applied. The PJAC graft is equally distributed in the defect with space in between the fragments so as not over-fill the defect. Then, a new fibrin glue layer is placed to cover the graft. The overall construct remains just below the level of the normal articular surface. The knee is cycled through the range of motion to ensure that the tissue construct is stable. We present images of the cartilage defect after debridement and the allograft implantation procedure. In addition we will submit an instructional video performed on a knee specimen. Results: Outcomes measured were: IKDC, Lysholm, and Tegner knee scores together with arc of motion of the joint. After 28 months follow up, patients had gained complete range of motion and significantly decreased pain. Improvement for each outcome measure used is reported. Conclusions: PJAC transplantation offers pain relief and improved short term outcomes in high level performance athletes. Both of our patients are back to practicing their sport with notable improvement in symptoms. No complications have been noted. Long-term data is not yet available. References: Am J Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, Radiographic, and Histological Outcomes After Cartilage Repair With Particulated Juvenile Articular Cartilage: A 2-Year Prospective Study. Sports Med. 2014 Jun;42(6):1417-25. Saltzman BM, Lin J, Lee S. Particulated Juvenile Articular Cartilage Allograft Transplantation for Osteochondral Talar Lesions. Cartilage. 2017 Jan;8(1):61-72. Arshi A, Wang D, Jones KJ. Combined Particulated Juvenile Cartilage Allograft Transplantation and Medial Patellofemoral Ligament Reconstruction for Symptomatic Chondral Defects in the Setting of Recurrent Patellar Instability. Arthrosc Tech. 2016 Oct 10;5(5)


2019 ◽  
Vol 7 (3_suppl) ◽  
pp. 2325967119S0018
Author(s):  
Audrey Rustad ◽  
Nicolas G. Anchustegui ◽  
Stockton Troyer ◽  
Cooper Shea ◽  
Aleksei Dingel ◽  
...  

Background: While access to pediatric tissue for cartilage conditions is limited, recent research on the use of pediatric cartilage tissue for implantation has shown promising results. These pediatric grafts may include bulk osteochondral allografts, morselized cartilage, or cellular manipulation products. The purpose of this study was to evaluate the parameters of cartilage thickness in different regions of the pediatric knee from a larger pediatric knee specimen research database. Methods: CT Scans of 12 skeletally immature knees ranging from ages 7 to 11 were evaluated. Cartilage thickness measurements were taking in the following regions: 1. Femoral Condyles - Cahill Zones 1, 2, 4, and 5 (Fig. 1) on coronal plane CT images, the region of greatest cartilage thickness on medial and lateral femoral condyles using coronal plane CT images, and Cahill Zones A, B, and C on sagittal plane CT images (Fig. 2). 2. Tibial Plateau – the region of greatest cartilage thickness identified on the medial and lateral sides of the tibial plateau using coronal plane CT images (Fig. 1). 3. Patella – the region of greatest cartilage thickness identified on axial and sagittal CT images (Fig. 3 and 4). Results: The cartilage on the medial femoral condyle had an average thickness of 4.86 mm ± 0.61 mm at its thickest point and the cartilage on lateral femoral condyle had an average thickness of 3.71 mm ± 0.52 mm at its thickest point. The cartilage on the medial tibial plateau had an average thickness of 2.80 mm ± 0.26 mm at its thickest point and the cartilage on the lateral tibial plateau had an average thickness of 3.29 mm ± 0.45 mm at its thickets point. The cartilage on the midpoints of Cahill zones 1, 2, 3, and 4 had an average thickness of 2.93 mm ± 0.62 mm, 3.42 mm ± 0.66 mm, 2.81 mm ± 0.46 mm, and 3.30 mm ± 0.73 mm respectively. The cartilage on the midpoints of Cahill zones A, B, and C had an average thickness of 3.81 mm ± 0.68 mm, 4.40 mm ± 0.49 mm, and 3.82 mm ± 0.68 mm respectively. The cartilage at its thickest point on the patella had an average thickness of 4.53 mm ± 0.38 mm from an axial view and 4.40 mm ± 0.49 mm from a sagittal view (Fig. 5 and 6). Conclusion: Pediatric knees demonstrate relatively thick cartilage regions in multiple zone of the knee, compared with adult specimens. Increasing access to and use of this tissue for cartilage grafts, non-manipulated tissue, and manipulated tissue offer significant opportunity to address cartilage loss. Osteochondral allograft procedures may benefit from access to such tissue, with relatively high volume and thickness of normal articular cartilage. [Figure: see text][Figure: see text][Figure: see text][Figure: see text][Figure: see text][Figure: see text]


Joints ◽  
2018 ◽  
Vol 06 (04) ◽  
pp. 246-250
Author(s):  
Antonio Gigante ◽  
Marco Cianforlini ◽  
Luca Farinelli ◽  
Riccardo Girotto ◽  
Alberto Aquili

AbstractFull-thickness articular cartilage defects do not heal spontaneously. Several techniques have been developed to address this issue, but none resulted in the restitutio ad integrum of the articular cartilage. The most frequent sites of chondral lesion in the knee are medial femoral condyle and patella. The patellofemoral lesions are characterized by outcomes that are generally worse than those of tibiofemoral ones. To date, it has been well recognized the chondrogenic potential of rib perichondrium, and costal cartilage grafts have been extensively used in reconstructive surgery. Considering the need to find a gold standard technique to restore articular defect, we developed and here described a new technique to repair cartilage lesions of the knee using autologous costal cartilage graft with its perichondrium. This innovative surgical approach can be used to treat full thickness articular defects using autologous hyaline cartilage, making it possible to cover wide defects. This one step technique is low invasive, not technically demanding with minimal donor site morbidity and it has low costs. The long-term clinical efficacy of the method remains to be evaluated.


2001 ◽  
Vol 26 (3) ◽  
pp. 254-260 ◽  
Author(s):  
S.Y. Hu ◽  
S. Wang ◽  
R.T. Zuo ◽  
K.L. Wang ◽  
L. Qin

Seven healthy mature rabbits were used to study both the surface morphology of the meniscus using both transmission electronmicroscopy (TEM) and scanning electronmicroscopy (SEM) and articular cartilage of the femoral condyle using SEM. Results showed that the membrane covering the meniscus was structurally the extension of synovial membrane of the knee joint capsule. Additionally, the presence of canal-like openings over the membranous surface to the meniscus was noted, which were absent over the articular cartilage surface. Key words: transmission and scanning electronmicroscopy, meniscus, articular cartilage, rabbits


Sign in / Sign up

Export Citation Format

Share Document