scholarly journals Metalliferous content of drinking water and sediments in storage tanks of some schools in Erbil city, Iraq

2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Hawraz Sami Khalid ◽  
Hoshyar Saadi Ali ◽  
Dhary Almashhadany

The present study was conducted to evaluate the quality of drinking water in randomly selected schools in Erbil city, Kurdistan Region, Iraq. The water quality indices such as the Heavy metal Pollution Index (HPI) and Heavy metal Evaluation Index (HEI) were applied to characterize water quality. Eighteen schools were incorporated and sampled for their water storage tanks available to students. Water samples and sediment samples from tanks floor were analyzed by Inductively Coupled Plasma Optical Emission Spectrometer for the determination of twenty-two metal elements. In drinking water samples, all detected metals did not exceed the permissible limits of the World Health Organization. The results of this study showed that the average values of HPI and HEI for As, Cd, Cr, Cu, Fe, Pb, Mn, Ni, and Zn were 54.442 and 0.221, respectively. According to data of the water quality indices, the schools drinking water quality are good and suitable for drinking in terms of heavy metals. However, sediments samples contained high concentrations of all elements including the toxic heavy metals (As, Cd, Cr, and Pb). Re-suspension of sediments into water column after refilling storage tanks can pose a serious threat to students drinking water from such vessels. It is therefore recommended that proper storage tanks are provided to the schools accompanied by continuous sanitation and hygiene practice to mitigate the corrosion of tanks to avoid health risks of toxic metal

2020 ◽  
Vol 18 (6) ◽  
pp. 1050-1064
Author(s):  
Isabel Cipriani-Avila ◽  
Jon Molinero ◽  
Eliza Jara-Negrete ◽  
Miren Barrado ◽  
César Arcos ◽  
...  

Abstract Chemical elements, which are present in drinking water, could vary due to water sources, treatment processes or even the plumbing materials. Most of these elements do not represent a threat, while others, such as heavy metals, have been proven to cause harmful effects over human and aquatic wildlife. In this study, the quality of drinking water in three cities in Ecuador, Quito, Ibarra and Guayaquil was assessed through a multielement analysis and the heavy metal pollution index (HPI). A total of 102 drinking water samples and six natural water samples were collected and analyzed. Within the scope of analysis, results show that water quality complies with local and international guidelines. HPI did not show significant differences in the water that is supplied to the different neighborhoods of the three cities studied. However, actions should be taken to protect the sources of water, especially in Guayaquil, due to the presence of lead and chromium. For instance, lead was found in 2.8% of the samples in concentrations above World Health Organization (WHO) recommended values. Thus, we suggest to assessing the quality and age of the plumbing system within the whole country, in order to avoid drinking water contamination with heavy metals.


Author(s):  
Caroline Barituka Ganabel ◽  
Confidence Kinikanwo Wachukwu ◽  
Samuel Douglas Abbey ◽  
Easter Godwin Nwokah

Aim: This study aimed to assess the quality of drinking water in some hydrocarbon-impacted Ogoni communities. Study Design: The study employ a cross-sectional and analytical design using stratified sampling method. Place and Duration of Study: Department of Medical Laboratory Science of Rivers State University, Giolee Global Resource Limited and Environmental Consultancy Services between March 2020 and March 2021. Methodology: Water samples were collected from (20 hydrocarbon- impacted communities) in the 4 Local Government Area (LGAs) of Ogoni land. These water samples were analyzed to determine the physicochemical, bacteriological, heavy metal and total petroleum hydrocarbon (TPH) parameters using standard methods and operational procedures. The data obtained were subjected to descriptive statistical analysis. The general linearized model (GIG) was used to generate analysis of variance (ANOVA) mean and standard error and arrange, statistically significant was set as p-value of .05 (95% confidence limit). Pearson correlation test was used to calculate the correlation between TPH, Heavy metal, and physicochemical parameters in hydrocarbon and non-hydrocarbon impacted communities. All statistical analyses were performed using GraphPad Prism (Version 8). Results: The results obtained for physicochemical parameters were pH 4.3±0.8 mg/l, EC 0.03±0.05 mg/l, DO 5.5±1.6 mg/l, Temp 25.0±0.0 mg/l, Mv 0.32±0.27 mg/l, Nitrite 0.0058±013 mg/l, Nitrate 0.1530±158 mg/l. These results were all below the recommended standard for Nigeria standard of drinking water quality (NSDWQ) and World Health Organization (WHO). The bacteriological analyses were carried out using multiple tubes technique (Most Probable Number), total coliform count, (TC), total heterotrophic count (THBC) and total fungal count (TFC). The results obtained were 0.941±2.397 cfu/ml, 89.3±176.6 cfu/ml, 297.8±144.4 cfu/ml, and 0.32±0.84 cfu/ml respectively. The p-values for TFC (<0.0002) were statistically significant. Heavy metal profiling was: Cr 0.194±0.320 mg/l, Cd 0.469±0.569 mg/l, Cu 0.211±0.348 mg/l, Pb 0.0336±0.20 mg/l, Fe 0.705±1.244 mg/l, Zn 0.258±0.249 mg/l, respectively. Generally, the concentration of heavy metal   increased more than the standard recommended by NSDWQ and WHO except for Zn 0.255±0.249 mg/l, and Cu 0.56±0.50 mg/l, that is slightly lower than the acceptable limit recommended by WHO and NSWWQ. The sequences of heavy metal concentration were in Cd > Cr> Pb>Fe> Cu.>Zn. The statistical significance values for Pb p=.003 and for Zn p=.009 were statistically significant. The concentration of TPH were (349.9 ppm/ml) higher than the recommended values for NSDWQ and WHO. Conclusion: The findings in this research reviewed a worrisome level of TPH and Pb, and which could have devastating impact on bacterial biodiversity.


2021 ◽  
Author(s):  
Abubakar Bilyaminu Musa ◽  
Mala Babagana Gutti

This study investigates the variation in water quality parameters due to short term storage in reservoirs in north-east Nigeria. The objective of the study is to determine the water quality, testing selected vital parameters and determining the DWQI of the samples from selected water sources and their respective reservoirs. The World Health Organization (WHO), as well as the Canadian Council of Ministers of the Environment (CCME) standards of water quality test and drinking water quality indices, were adopted. Samples were collected at both source and reservoir from five different points in the same area. The quality of water was analyzed in order to determine the variation in water quality and drinking water quality indices when stored over time in a storage system. The result of the quality test revealed that the level of all the parameters were within the limit set by WHO except that of Iron and Manganese which were slightly above the standard limits. The correlated variables revealed that a very strong relationship exists between all the samples with the highest R2 as 0.99 and the lowest R2 as 0.94. The drinking water quality indices were found to be good for all samples with an index value of 88.45%. This study strongly recommends further investigation as well as regular monitoring of the drinking water quality in the area.


2017 ◽  
Vol 7 (4) ◽  
pp. 509-519 ◽  
Author(s):  
Abhishek Gupta ◽  
Rakesh Singh ◽  
Prashant Singh ◽  
Rajendra Dobhal

2019 ◽  
Vol 17 (4) ◽  
pp. 609-621
Author(s):  
Amadou Toure ◽  
Duan Wenbiao ◽  
Zakaria Keita ◽  
Abdramane Dembele ◽  
Elsamoal Elzak Abdalla Elzaki

Abstract Water is an indispensable commodity for the survival of all living beings and for their well-being. The objective of this work is to evaluate the level of pollution of different drinking water sources consumed and its link with health in Pelengana commune, Mali. Samples of water were taken from various sources, namely, hand pumps, boreholes, dug wells, and shallow wells for physical, chemical, heavy metals, and bacteriological analyses, using American Public Health Association (APHA) Standard Techniques. Results revealed that the nitrate-nitrogen (NO3−N) values of the water samples from the different water sources had concentrations exceeding the United States Environmental Protection Agency's (US-EPA) regulation of 10 mg/L, as well as World Health Organization Guideline for Drinking Water Quality (WHO GDWQ) (11 mg/L). The same applies to heavy metals such as Cd, Pb, and Fe, in which, concentrations exceed their allowable limits in certain locations. Moreover, apart from water samples from some different boreholes, total coliform, and Escherichia coli have been detected in all selected water sources, which indicates fecal contamination. In all, there is a pressing need to stop the consumption of drinking water from contaminated sources and to effect appropriate treatment.


2017 ◽  
Vol 4 (2) ◽  
pp. 73-79 ◽  
Author(s):  
Nematollah Jafarzadeh ◽  
Maryam Ravanbakhsh ◽  
Kambis Ahmadi Angali ◽  
Ahmad Zare Javid ◽  
Darioush Ranjbar Vakil Abadi ◽  
...  

2020 ◽  
Author(s):  
Francis Hamwiinga ◽  
Chisala D. Meki ◽  
Patricia Mubita ◽  
Hikabasa Halwiindi

Abstract Background: One of the factors impeding access to safe water is water pollution. Of particular concern is heavy metal contamination of water bodies. This study was aimed at determining the levels of heavy metals in drinking water sources of Chingola District of Zambia. Methods: A cross sectional study was employed. A total of 60 water samples were collected. Thirsty (30) samples were collected in the dry season in the month of October 2016 and another 30 in the wet season in the months of February and March, 2017. For each season 10 water samples were collected from each of the three water sources. i.e. Tap water, Urban ground water sources and Rural ground water sources. Heavy metal analysis was done using Atomic Absorption Spectrophotometer (AAS).Results: This study revealed that the concentrations of Iron, Manganese, Lead, Nickel and Arsenic were beyond maximum permissible levels in various water sources. Combined averages for both dry and wet seasons were as follows: Iron: 2.3, Copper: 0.63, Cobalt: 0.02, Manganese: 0.36, Lead: 0.04, Zinc:3.2, Nickel: 0.03, Arsenic: 0.05. Chromium and Cadmium were below detection limit in all water samples. The median concentrations of iron, arsenic, copper, manganese in drinking water from the Tap, rural and urban ground water sources were different, and this difference was statistically significant (p<0.05). The median concentrations of arsenic, nickel, manganese and cobalt were different between dry and wet season, and this difference was statistically significant (p<0.05).Conclusions: Sources of heavy metals in water seems to be both natural and from human activities. The concentration of heavy metals in different water sources in this study was found to be above the recommended levels. This calls for improvement in water monitoring to protect the health of the public. Therefore, there is need for continuous monitoring of heavy metals in drinking water sources by regulatory authorities.


2011 ◽  
Vol 8 (1) ◽  
pp. 276-280 ◽  
Author(s):  
Olcay Kaplan ◽  
Nuran Cikcikoglu Yildirim ◽  
Numan Yildirim ◽  
Nilgun Tayhan

The drinking water quality is associated with the conditions of the water supply networks, the pollution and the contamination of groundwater with pollutants of both anthropogenic and natural origin. In this study, water samples were taken from four different waterworks in Tunceli, Turkey and heavy metals concentrations (As, Cu, Cd, Cr, Pb, Ni and Hg) were measured. Four sampling sites were pre-defined in different locations of the city. The obtained results showed that, the heavy metals concentrations in water samples did not exceed the values of WHO (World Health Organization), EC (Europe Community), EPA (Environment Protection Agency) and TSE-266 (Turkish Standard) guidelines.


2018 ◽  
Vol 34 (10) ◽  
pp. 714-725
Author(s):  
Rajan Jakhu ◽  
Rohit Mehra

Drinking water samples of Jaipur and Ajmer districts of Rajasthan, India, were collected and analyzed for the measurement of concentration of heavy metals. The purpose of this study was to determine the sources of the heavy metals in the drinking water. Inductively coupled plasma mass spectrometry was used for the determination of the heavy metal concentrations, and for the statistical analysis of the data, principal component analysis and cluster analysis were performed. It was observed from the results that with respect to WHO guidelines, the water samples of some locations exceeded the contamination levels for lead (Pb), selenium (Se), and mercury (Hg), and with reference to the EPA guidelines, the samples were determined unsuitable for drinking because of high concentrations of Pb and Hg. Using multivariate statistical analysis, we determined that copper, manganese, arsenic, Se, and Hg were of anthropogenic origin, while Pb, copper, and cadmium were of geogenic origin. The present study reports the dominance of the anthropogenic contributions over geogenics in the studied area. The sources of the anthropogenic contaminants need to be investigated in a future study.


Sign in / Sign up

Export Citation Format

Share Document