scholarly journals SURPRISING BEHAVIOUR AND SINGULARITY IN THE SAINT VENANT APPROXIMATION FOR A FLUID

Author(s):  
Paolo Luchini

A research line is reviewed which, over a few years, led to a substantial change of perspective about the simplified models that underlie the description of quasi-onedimensional streams, their instabilities, and their effects upon sandy beds. Even when the flow is assumed to be laminar, the Saint-Venant equation of quasi-onedimensional fluid flow can be formulated in more than one manner; it will be shown that only one of these choices is consistent with the complete three-dimensional Navier- Stokes equations. When the flow is turbulent, an added complication is the presence of a turbulence model, most often of the eddy-viscosity type; it will be shown that such a model can be in strong contrast with a direct numerical simulation of the same phenomenon, even to the point of producing results of opposite sign. In addition, the complete numerical simulation of flow past an undulated bottom exhibits a non-monotonic approach to its long-wave, quasi-onedimensional limit, with a surprising resonance that has no laminar counterpart and must become the subject of future investigations.

2013 ◽  
Vol 694-697 ◽  
pp. 56-60
Author(s):  
Yue Jun Ma ◽  
Ji Tao Zhao ◽  
Yu Min Yang

In the paper, on the basis of three-dimensional Reynolds-averaged Navier-Stokes equations and the RNG κ-ε turbulence model, adopting Three-dimensional unstructured grid and pressure connection the implicit correction SIMPLEC algorithm, and using MRF model which is supported by Fluent, this paper carries out numerical simulation of the internal flow of the centrifugal pump in different operation points. According to the results of numerical simulation, this paper analyzes the bad flow phenomena of the centrifugal pump, and puts forward suggests about configuration perfected of the centrifugal pump. In addition, this paper is also predicted the experimental value of the centrifugal pump performance, which is corresponding well with the measured value.


2013 ◽  
Vol 378 ◽  
pp. 418-423
Author(s):  
Gang Liu ◽  
Jia Wu ◽  
Wei Li

The three-dimensional construct of concentration field in an oscillatory flow reactor (OFR) containing periodically spaced conic ring baffles was investigated by numerical simulation employing Reynolds-averaged Navier-Stokes equations. The computation covered a range of Oscillatory Reynolds number (Reo) from 623.32 to 3116.58 at Strouhal number (St) 0.995 and 1.99. The contour of concentration field showed that the concentration in the most part of the channel is relative uniform and a small retention area is found below the conic ring baffles, which means a region of relative poor mixing. In addition, the turbulent diffusion coefficient calculated from the simulation results implied the greater oscillatory amplitude and oscillatory frequency superimposed to the fluid, the stronger is the turbulence intensity.


Author(s):  
Jianjun Liu

This paper describes the numerical simulation of the asymmetric exhaust flows by using a 3D viscous flow solver incorporating an actuator disc blade row model. The three dimensional Reynolds-Averaged Navier-Stokes equations are solved by using the TVD Lax-Wendroff scheme. The convergence to a steady state is speeded up by using the V-cycle multigrid algorithm. Turbulence eddy viscosity is estimated by the Baldwin-Lomax model. Multiblock method is applied to cope with the complicated physical domains. Actuator disc model is used to represent a turbine blade row and to achieve the required flow turning and entropy rise across the blade row. The solution procedure and the actuator disc boundary conditions are described. The stream traces in various sections of the exhaust hood are presented to demonstrate the complicity of the flow patterns existing in the exhaust hood.


2006 ◽  
Vol 28 (3) ◽  
pp. 134-144
Author(s):  
Nguyen The Duc

The paper presents a numerical method to simulate two-phase turbulent cavitating flows in ducts of varying cross-section usually faced in engineering. The method is based on solution of two-phase Reynolds-averaged Navier-Stokes equations of two-phase mixture. The numerical method uses artificial compressibility algorithm extended to unsteady flows with dual-time technique. The discreted method employs an implicit, characteristic-based upwind differencing scheme in the curvilinear grid systems. Numerical simulation of an unsteady three-dimensional two-phase cavitating flow in a duct of varying cross-section with available experiment was performed. The unsteady important characteristics of the unsteady flow can be observed in results of numerical simulation. Comparison of predicted results with experimental data for time-averaged velocity and phase fraction are provided.


Author(s):  
Yu Nishio ◽  
Keiji Niwa ◽  
Takanobu Ogawa

Abstract Motion of liquid pouring from a beverage can is numerically studied. A liquid is poured from a can which is rotated at a prescribed angular speed. The flow is simulated by solving the unsteady three-dimensional Navier-Stokes equations. An experiment under the same condition is also carried out to validate the computational result. The result shows that, when the can is tipped, the liquid flows over the lid of the can and is once obstructed by the rim of the lid. The numerical result is in good agreement with the experimental result. The effect of condensation formed on a can surface is also considered. The effect of condensation is taken into account by adjusting a contact angle. The liquid pouring from a can trickles down along the can body. The computation reproduces these experimental observations.


Author(s):  
Kun Yang ◽  
Liang Cheng ◽  
Hongwei An ◽  
Ming Zhao

This paper concerns Honji instability generated around a circular cylinder in an oscillatory flow with a small oblique angle. In this study, direct numerical simulation has been conducted for an oscillatory flow past a stationary cylinder with small incidence angles (α) of 5° and 10° at KC number of 2 and β number of 200. The three-dimensional Navier-Stokes equations are solved using the Petrov-Galerkin finite element method. Flow structures around the cylinder are visualized through using streamlines, velocity vectors and vorticity contours. Honji instability has been captured at both chosen inclination angles. However Honji vortex pairs are asymmetric at α = 5° and 10° due to the inclination of the oscillation direction and can only be observed during the flow reversal. It is also found that the flow inclination appears to suppress the three-dimensional instability.


2013 ◽  
Vol 353-356 ◽  
pp. 2545-2549
Author(s):  
Xu Zhang ◽  
Xiu Bin He

A numerical simulation is carried out to investigate the unsteady flows over a swimming fish. The three-dimensional incompressible Navier-Stokes equations are solved using the finite volume method with artificial compressibility and dual time stepping approaches on unstructured moving grid. A realistic fish-like body is modeled, which undergoes undulatory swimming in a straight line. Both inviscid and viscous flows have been simulated to study the flow structures.


Sign in / Sign up

Export Citation Format

Share Document