scholarly journals TEP production under oxidative stress of the picocyanobacterium Synechococcus

2019 ◽  
Vol 78 (3) ◽  
Author(s):  
Cristiana Callieri ◽  
María B. Sathicq ◽  
Pedro J. Cabello-Yeves ◽  
Ester M. Eckert ◽  
Justo Salvador Hernández-Avilés

Transparent exopolymer particles (TEP) are mainly acidic polysaccharides directly or indirectly formed by phytoplankton and bacteria. These particles are often colonized by picoplankton and considered a hot spot for microbial activity. Recent studies suggested an important role of Synechococcus in TEP production found in lakes and prompted us to further investigate this issue using monoclonal xenic cultures of Synechococcus. We tested TEP production under oxidative stress in two treatments, one with hydrogen peroxide and another treated with ultraviolet radiation (UVR) and high photosynthetic active radiation (PAR), compared with an unstressed control. Our results showed a cell-normalized TEP production, ranging from 12 to 238 ng C cell-1 among strains, not only under stress but also in the control with non-limiting nutrients. Our data prove that freshwater communities of Synechococcus and their associated heterotrophic microflora, are capable of producing TEP even during growth phase. The oxidative stress induced extra production of TEP up to 400 ng C cell-1 in one of our phycocyanin-type (PC) strain. The phycoerythrin-type (PE) strains increased TEP production, particularly under UV-PAR stress, whereas the PC strains did it under H2O2 stress. This study provides new perspectives on the potential role of freshwater Synechococcus in TEP production.

2006 ◽  
Vol 290 (1) ◽  
pp. C208-C221 ◽  
Author(s):  
Yoshito Ihara ◽  
Yoshishige Urata ◽  
Shinji Goto ◽  
Takahito Kondo

Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+ ([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]i caused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+ chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]i in the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]i in the CRT-overexpressing cells treated with H2O2 compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2 through a change in Ca2+ homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells.


Author(s):  
Kenji Hagimori ◽  
Hidenori Kato ◽  
Keiko Fukuda ◽  
Masaharu Kikuta ◽  
Yasuhiro Tsukamoto ◽  
...  

2022 ◽  
pp. 287-309
Author(s):  
Helena Ferreira ◽  
Elisabete Pinto ◽  
Ana M. Gil ◽  
Marta W. Vasconcelos

Sign in / Sign up

Export Citation Format

Share Document