scholarly journals Glacial Limits and Ice-Flow Directions of the Last Cordilleran Ice Sheet in Yukon Territory Between 60 and 63 Degrees North

1990 ◽  
Author(s):  
L E Jackson ◽  
T D Mackay
2007 ◽  
Vol 45 (3) ◽  
pp. 341-354 ◽  
Author(s):  
Lionel E. Jackson ◽  
Brent Ward ◽  
Alejandra Duk-Rodkin ◽  
Owen L. Hughes

ABSTRACT The Cordilleran Ice Sheet in Yukon radiated from ice-divides in the Selwyn, PeIIy1 Cassiar, and eastern Coast Mountains and was contiguous with a piedmond glacier complex from the St. Elias Mountains. Expansion of glaciers in divide areas could have been underway by 29 ka BP but these did not merge to form the ice sheet until after 24 ka BP. The firn line fell to approximately 1500 m at the climax of McConnell Glaciation. Flow within the ice sheet was more analogous to a complex of merged valley glaciers than to that of extant ice sheets: topographic relief was typically equal to or exceeded ice thickness, and strongly influenced ice flow. Surface gradients on the ice sheet were fractions of a degree. Steeper ice-surface gradients occurred locally along the digitate ice margin. Retreat from the terminal moraine was initially gradual as indicated by recessional moraines within a few tens of kilometres of the terminal moraine. Small magnitude readvances occurred locally. The ice sheet eventually disappeared through regional stagnation and downwasting in response to a rise in the firn line to above the surface of the ice sheet. Regional déglaciation was complete prior to approximately 10 ka BP.


2007 ◽  
Vol 45 (3) ◽  
pp. 287-299 ◽  
Author(s):  
Barry L. Robert

ABSTRACT A time-dependent ice flow model is used to provide detailed reconstructions of ice growth and retreat for the southern portion of the Late Wisconsinan Cordilleran Ice Sheet. The two-dimensional, time-dependent model provides ice surface elevations and flow directions at a grid spacing of 15 km. Input to the model includes subglacial topography, a net mass balance function, and two ice flow parameters. The net mass balance function uses a polynomial equation to estimate equilibrium line altitude (ELA) across the study area. A quadratic equation is then used to provide net mass balance values as a function of elevation relative to the ELA. Late Wisconsinan glacial conditions are simulated by systematically lowering the ELA. The general timing of the model ice advance and retreat is tested against radiocarbon dated localities which place limits on the ice sheet's areal extent for different times during the Late Wisconsinan glaciation. In addition, glacial-geologic evidence directly attributable to the latest Cordilleran Ice Sheet is used in assessing the model reconstructions. Results from these experiments show that an ice growth and retreat chronology consistent with the limiting radiocarbon dates can be generated using the model, and provide information on flow directions and ice growth and retreat patterns.


2019 ◽  
Author(s):  
Brent C. Ward ◽  
◽  
Jeffrey D. Bond ◽  
Derek Cronmiller ◽  
Derek Turner ◽  
...  

2007 ◽  
Vol 68 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Brent C. Ward ◽  
Jeffrey D. Bond ◽  
John C. Gosse

AbstractCosmogenic 10Be ages on boulders of 54–51 ka (n=4) on a penultimate Cordilleran ice sheet (CIS) drift confirm that Marine Oxygen Isotope Stage (MIS) 4 (early Wisconsin) glaciation was extensive in parts of Yukon Territory, the first confirmed evidence in the Canadian Cordillera. We name the glaciation inferred from the mapped and dated drift the Gladstone. These results are in apparent contrast to the MIS 6 (Illinoian) age of the penultimate Reid glaciation to the east in central Yukon but are equivalent to exposure ages on MIS 4 drift in Alaska. Contrasting penultimate ice extents in Yukon requires that different source areas of the northern CIS in Yukon responded differently to climatic forcing during glaciations. The variation in glacier extent for different source areas likely relates to variation in precipitation during glaciation, as the northern CIS was a precipitation-limited system. Causes for a variation in precipitation remain unclear but likely involve the style of precipitation delivery over the St. Elias Mountains possibly related to variations in the Aleutian low.


2016 ◽  
Vol 85 (3) ◽  
pp. 409-429 ◽  
Author(s):  
Adrian Scott Hickin ◽  
Olav B. Lian ◽  
Victor M. Levson

Geomorphic, stratigraphic and geochronological evidence from northeast British Columbia (Canada) indicates that, during the late Wisconsinan (approximately equivalent to marine oxygen isotope stage [MIS] 2), a major lobe of western-sourced ice coalesced with the northeastern-sourced Laurentide Ice Sheet (LIS). High-resolution digital elevation models reveal a continuous 75 km-long field of streamlined landforms that indicate the ice flow direction of a major northeast-flowing lobe of the Cordilleran Ice Sheet (CIS) or a montane glacier (>200 km wide) was deflected to a north-northwest trajectory as it coalesced with the retreating LIS. The streamlined landforms are composed of till containing clasts of eastern provenance that imply that the LIS reached its maximum extent before the western-sourced ice flow crossed the area. Since the LIS only reached this region in the late Wisconsinan, the CIS/montane ice responsible for the streamlined landforms must have occupied the area after the LIS withdrew. Stratigraphy from the Murray and Pine river valleys supports a late Wisconsinan age for the surface landforms and records two glacial events separated by a non-glacial interval that was dated to be of middle Wisconsinan (MIS 3) age.


2007 ◽  
Vol 53 (180) ◽  
pp. 71-83 ◽  
Author(s):  
Jacob Napieralski ◽  
Alun Hubbard ◽  
Yingkui Li ◽  
Jon Harbor ◽  
Arjen P. Stroeven ◽  
...  

AbstractA major difficulty in assimilating geomorphological information with ice-sheet models is the lack of a consistent methodology to systematically compare model output and field data. As an initial step in establishing a quantitative comparison methodology, automated proximity and conformity analysis (APCA) and automated flow direction analysis (AFDA) have been developed to assess the level of correspondence between modelled ice extent and ice-marginal features such as end moraines, as well as between modelled basal flow directions and palaeo-flow direction indicators, such as glacial lineations. To illustrate the potential of such an approach, an ensemble suite of 40 numerical simulations of the Fennoscandian ice sheet were compared to end moraines of the Last Glacial Maximum and the Younger Dryas and to glacial lineations in northern Sweden using APCA and AFDA. Model experiments evaluated in this manner were ranked according to level of correspondence. Such an approach holds considerable promise for optimizing the parameter space and coherence of ice-flow models by automated, quantitative assessment of multiple ensemble experiments against a database of geological or glaciological evidence.


2017 ◽  
Vol 54 (1) ◽  
pp. 52-75 ◽  
Author(s):  
David H. Huntley ◽  
Adrian S. Hickin ◽  
Olav B. Lian

This paper reports on the landform assemblages at the northern confluence of the Late Wisconsinan Laurentide and Cordilleran ice sheets with montane and piedmont glaciers in the northern Rockies and southern Mackenzie Mountains. Recent observations in northeastern British Columbia refine our knowledge of the pattern and style of ice sheet retreat, glacial lake formation, and meltwater drainage. At the onset of deglaciation, confluent Laurentide and Cordilleran terminal ice margins lay between 59°N, 124°30′W and 60°N, 125°15′W. From this terminal limit, ice sheets retreated into north-central British Columbia and Yukon Territory, with remnant Cordilleran ice and montane glaciers confined to mountain valleys and the Liard Plateau. Distinctive end moraines are not associated with the retreat of Cordilleran ice in these areas. Laurentide ice retreated northeastward from uplands and the plateaus; then separated into lobes occupying the Fort Nelson and Petitot river valleys. Ice-retreat landforms include recessional end moraines (sometimes overridden and drumlinized), hill–hole pairs, crevasse-fill deposits, De Geer-like ribbed till ridges, hummocky moraines, kames, meltwater features, and glacial lake deposits that fall within the elevation range of glacial Lake Liard and glacial Lake Fort Nelson (ca. 840–380 m). Meltwater and sediment transport into glacial lakes Fort Nelson, Liard, Nahanni, and Mackenzie was sustained by remnant ice in the Liard River and Fort Nelson River drainage basins until the end of glaciation. Optical dating of sand from stabilized parabolic dunes on the Liard Plateau indicates that proglacial conditions, lake formation, and drainage began before 13.0 ± 0.5 ka (calendar years). The Petitot, Fort Nelson, and Liard rivers all occupy spillways incised into glacial deposits and bedrock by meltwater overflow from glacial lakes Peace and Hay.


Sign in / Sign up

Export Citation Format

Share Document