scholarly journals Optimisation of automated ribosomal intergenic spacer analysis for the estimation of microbial diversity in fynbos soil

2010 ◽  
Vol 106 (7/8) ◽  
Author(s):  
Etienne Slabbert ◽  
Carel J. Van Heerden ◽  
Karin Jacobs
1999 ◽  
Vol 65 (10) ◽  
pp. 4630-4636 ◽  
Author(s):  
Madeline M. Fisher ◽  
Eric W. Triplett

ABSTRACT An automated method of ribosomal intergenic spacer analysis (ARISA) was developed for the rapid estimation of microbial diversity and community composition in freshwater environments. Following isolation of total community DNA, PCR amplification of the 16S-23S intergenic spacer region in the rRNA operon was performed with a fluorescence-labeled forward primer. ARISA-PCR fragments ranging in size from 400 to 1,200 bp were next discriminated and measured by using an automated electrophoresis system. Database information on the 16S-23S intergenic spacer was also examined, to understand the potential biases in diversity estimates provided by ARISA. In the analysis of three natural freshwater bacterial communities, ARISA was rapid and sensitive and provided highly reproducible community-specific profiles at all levels of replication tested. The ARISA profiles of the freshwater communities were quantitatively compared in terms of both their relative diversity and similarity level. The three communities had distinctly different profiles but were similar in their total number of fragments (range, 34 to 41). In addition, the pattern of major amplification products in representative profiles was not significantly altered when the PCR cycle number was reduced from 30 to 15, but the number of minor products (near the limit of detection) was sensitive to changes in cycling parameters. Overall, the results suggest that ARISA is a rapid and effective community analysis technique that can be used in conjunction with more accurate but labor-intensive methods (e.g., 16S rRNA gene cloning and sequencing) when fine-scale spatial and temporal resolution is needed.


2018 ◽  
Vol 152 (1) ◽  
pp. 81-94 ◽  
Author(s):  
Cléia S. Cabral ◽  
Maria Esther de N. Fonseca ◽  
Kátia R. Brunelli ◽  
Mauricio Rossato ◽  
Hélcio Costa ◽  
...  

2020 ◽  
Vol 12 (8) ◽  
pp. 3256 ◽  
Author(s):  
Agata Novara ◽  
Valentina Catania ◽  
Marco Tolone ◽  
Luciano Gristina ◽  
Vito Armando Laudicina ◽  
...  

Cover crop (CC) management in vineyards increases sustainability by improving soil chemical and biological fertility, but knowledge on its effects in semiarid soils is lacking. This study evaluated the effect of leguminous CC management on soil organic carbon (SOC) sequestration, soil nitrate content and microbial diversity in a semiarid vineyard, in comparison to conventional tillage (CT). SOC and nitrate were monitored during vine-growing season; soil respiration, determined by incubation experiments, microbial biomass and diversity was analyzed after CC burial. The microbial diversity was evaluated by bacterial and fungal automated ribosomal intergenic spacer analysis (ARISA) and high-throughput sequencing of 16SrDNA. CC increased nitrate content and, although it had no relevant effect on SOC, almost doubled its active microbial component, which contributes to SOC stabilization. An unexpected stability of the microbial communities under different soil managements was assessed, fungal diversity being slightly enhanced under CT while bacterial diversity increased under CC. The complete nitrifying genus Nitrospira and plant growth-promoting genera were increased under CC, while desiccation-tolerant genera were abundant in CT. Findings showed that temporary CC applied in semiarid vineyards does not optimize the provided ecosystem services, hence a proper management protocol for dry environments should be set up.


Diversity ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 37 ◽  
Author(s):  
Carmela Raffa ◽  
Carmen Rizzo ◽  
Marc Strous ◽  
Emilio De Domenico ◽  
Marilena Sanfilippo ◽  
...  

Lake Faro, in the North-Eastern corner of Sicily (Italy), shows the typical stratification of a meromictic tempered basin, with a clear identification of the mixolimnion and the monimolimnion, separated by an interfacial chemocline. In this study, an annual-scaled study on the space-time distribution of the microbial communities in water samples of Lake Faro was performed by both ARISA (Amplified Ribosomal Intergenic Spacer Analysis) and CARD-FISH (Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization) approaches. A correlation between microbial parameters and both environmental variables (i.e., temperature, pH, dissolved oxygen, redox potential, salinity, chlorophyll-a) and mixing conditions was highlighted, with an evident seasonal variability. The most significative differences were detected by ARISA between the mixolimnion and the monimolimnion, and between Spring and Autumn, by considering layer and season as a factor, respectively.


2019 ◽  
Vol 48 ◽  
pp. 101441 ◽  
Author(s):  
Mehrdad Madani ◽  
Len Ward ◽  
Andy Vierstraete ◽  
Solke H. De Boer ◽  
Maurice Moens

Sign in / Sign up

Export Citation Format

Share Document