Relationships among Brazilian and worldwide isolates of Fusarium oxysporum f. sp. lactucae race 1 inferred from ribosomal intergenic spacer (IGS-rDNA) region and EF-1α gene sequences

2018 ◽  
Vol 152 (1) ◽  
pp. 81-94 ◽  
Author(s):  
Cléia S. Cabral ◽  
Maria Esther de N. Fonseca ◽  
Kátia R. Brunelli ◽  
Mauricio Rossato ◽  
Hélcio Costa ◽  
...  
2003 ◽  
Vol 93 (8) ◽  
pp. 1014-1022 ◽  
Author(s):  
G. Cai ◽  
L. Rosewich Gale ◽  
R. W. Schneider ◽  
H. C. Kistler ◽  
R. M. Davis ◽  
...  

Thirty-nine isolates of Fusarium oxysporum were collected from tomato plants displaying wilt symptoms in a field in California 2 years after F. oxysporum f. sp. lycopersici race 3 was first observed at that location. These and other isolates of F. oxysporum f. sp. lycopersici were characterized by pathogenicity, race, and vegetative compatibility group (VCG). Of the 39 California isolates, 22 were in VCG 0030, 11 in VCG 0031, and six in the newly described VCG 0035. Among the isolates in VCG 0030, 13 were race 3, and nine were race 2. Of the isolates in VCG 0031, seven were race 2, one was race 1, and three were nonpathogenic to tomato. All six isolates in VCG 0035 were race 2. Restriction fragment length polymorphisms (RFLPs) and sequencing of the intergenic spacer (IGS) region of rDNA identified five IGS RFLP haplotypes, which coincided with VCGs, among 60 isolates of F. oxysporum from tomato. Five race 3 isolates from California were of the same genomic DNA RFLP haplotype as a race 2 isolate from the same location, and all 13 race 3 isolates clustered together into a subgroup in the neighbor joining tree. Collective evidence suggests that race 3 in California originated from the local race 2 population.


2007 ◽  
Vol 97 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Gladys Y. Mbofung ◽  
Soon Gyu Hong ◽  
Barry M. Pryor

Fusarium oxysporum f. sp. lactucae, causal agent of Fusarium wilt of lettuce, is a serious pathogen recently reported in Arizona. Sequence analysis of the mitochondrial small subunit (mtSSU), translation elongation factor 1-α (EF-1α) gene, and the nuclear ribosomal DNA intergenic spacer (IGS) region was conducted to resolve relationships among f. sp. lactucae isolates, F. oxysporum isolates from other hosts, and local non-pathogenic isolates. Analysis of mtSSU sequences provided limited phylogenetic resolution and did not differentiate the lactucae isolates from 13 other F. oxysporum isolates. Analysis of EF-1α sequences resulted in moderate resolution, grouping seven formae speciales with the lactucae isolates. Analysis of the IGS region revealed numerous sequence polymorphisms among F. oxysporum formae speciales consisting of insertions, deletions, and single nucleotide transitions and substitutions. Repeat sequence analysis revealed several duplicated subrepeat units that were distributed across much of the region. Based on analysis of the IGS sequence data, lactucae race 1 isolates resolved as a monophyletic group with three other formae speciales of F. oxysporum. In all analyses, lactucae race 2 isolates composed a separate lineage that was phylo-genetically distinct and distantly related to the lactucae race 1 isolates.


Plant Disease ◽  
2017 ◽  
Vol 101 (4) ◽  
pp. 550-556 ◽  
Author(s):  
P. M. Henry ◽  
S. C. Kirkpatrick ◽  
C. M. Islas ◽  
A. M. Pastrana ◽  
J. A. Yoshisato ◽  
...  

The objectives of this study were to investigate the structure of the population of Fusarium oxysporum f. sp. fragariae in California and to evaluate methods for its detection. Fifty-nine isolates of F. oxysporum f. sp. fragariae were obtained from diseased strawberry plants and their identity was confirmed by pathogenicity testing. The full nuclear ribosomal intergenic spacer (IGS) and elongation factor 1-α gene (EF-1α) were amplified by polymerase chain reaction (PCR) and sequenced to elucidate phylogenetic relationships among isolates. IGS and EF-1α sequences revealed three main lineages, which corresponded to three somatic compatibility groups. Primers designed to detect F. oxysporum f. sp. fragariae in Japan amplified a 239-bp product from 55 of 59 California isolates of F. oxysporum f. sp. fragariae and from no nonpathogenic isolates of F. oxysporum. The sequence of this PCR product was identical to the sequence obtained from F. oxysporum f. sp. fragariae isolates in Japan. Intensive sampling at two locations in California showed results of tests based on PCR and somatic compatibility to be in agreement for 97% (257 of 264) of isolates tested. Our findings revealed considerable diversity in the California population of F. oxysporum f. sp. fragariae, and indications that horizontal gene transfer may have occurred.


Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1811-1816
Author(s):  
Kelley R. Paugh ◽  
Thomas R. Gordon

Fusarium wilt of lettuce, caused by Fusarium oxysporum f. sp. lactucae, is now found in all major lettuce producing regions in California and Arizona. The population structure of F. oxysporum f. sp. lactucae in California and Arizona was characterized based on somatic compatibility and sequences of the translation elongation factor 1-α gene (EF-1α) and rDNA intergenic spacer region (IGS). In this study, 170 isolates were tested for somatic compatibility based on heterokaryon formation, using complementary nitrate nonutilizing (nit) mutants. Five subgroups (A to E) of somatic compatibility group 0300 were identified. Isolates associated with the same subgroup had a strong complementation reaction, whereas reactions between isolates of different subgroups were weak or delayed. An isolate from the first known infestation of Fusarium wilt of lettuce in California was associated with subgroup A, which predominated among isolates in our collection. Isolates representative of each subgroup were confirmed to be associated with race 1, based on the reaction of differential lettuce cultivars. It is possible that somatic compatibility subgroups B to E of F. oxysporum f. sp. lactucae were derived from subgroup A, as a consequence of somatic mutations affecting compatibility. If so, subgroups of F. oxysporum f. sp. lactucae may represent an intermediate step in divergence that will lead to clearly separable compatibility groups. Sequences of EF-1α and IGS were both identical for 58 isolates of F. oxysporum f. sp. lactucae that represented all somatic compatibility subgroups and locations from which isolates were obtained, indicating that subgroups were derived from the same clonal lineage (VCG 0300).


Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 237-240 ◽  
Author(s):  
Matias Pasquali ◽  
Flavia Dematheis ◽  
Giovanna Gilardi ◽  
Maria Lodovica Gullino ◽  
Angelo Garibaldi

Fusarium oxysporum f. sp. lactucae, the causal agent of Fusarium wilt of lettuce, has been reported in three continents in the last 10 years. Forty-seven isolates obtained from infected plants and seed in Italy, the United States, Japan, and Taiwan were evaluated for pathogenicity and vegetative compatibility. Chlorate-resistant, nitrate-nonutilizing mutants were used to determine genetic relatedness among isolates from different locations. Using the vegetative compatibility group (VCG) approach, all Italian and American isolates, type 2 Taiwanese isolates, and a Japanese race 1 were assigned to the major VCG 0300. Taiwanese isolates type 1 were assigned to VCG 0301. The hypothesis that propagules of Fusarium oxysporum f. sp. lactucae that caused epidemics on lettuce in 2001-02 in Italian fields might have spread via import and use of contaminated seeds is discussed.


2007 ◽  
Vol 25 (3) ◽  
pp. 451-454 ◽  
Author(s):  
Ailton Reis ◽  
Leonardo S Boiteux

Fusarium wilt, caused by three races of Fusarium oxysporum f. sp. lycopersici, is one of the most important tomato diseases. In Brazil, all three races were reported, however, race 3 has been so far restricted only to Espírito Santo State. In the present work, seven F. oxysporum isolates obtained from wilted plants of the race 1 and 2-resistant tomato hybrids 'Giovana', 'Carmen' and 'Alambra' in São José de Ubá and Itaocara (Rio de Janeiro State, Brazil) were characterized at race level. Virulence assays were performed using a set of race differential cultivars: 'Ponderosa' (susceptible to all races), 'IPA-5' (resistant to race 1), 'Floradade' (resistant to races 1 and 2), 'BHRS-2,3' (resistant to all three races). Two wild tomato accessions (Solanum pennellii 'LA 716' e S. chilense 'LA 1967') previously reported as resistant to all Brazilian isolates of F. oxysporum f. sp. lycopersici were also evaluated. Isolates from São José de Ubá and Itaocara were highly virulent to 'Ponderosa', 'IPA-5' and 'Floradade'. They were also able to infect a few plants of 'BHRS-2,3', inducing vascular browning and wilt symptoms. Solanum pennellii and S. chilense accessions displayed an extreme (immune-like) resistant response. These results indicated that all seven isolates could be classified as F. oxysporum f. sp. lycopersici race 3, expanding the geographical distribution of this pathogen within Brazil. The hypothesis of transmission via contaminated seeds is reinforced after the present report, which confirms the almost simultaneous outbreak of race 3 in two geographically isolated tomato-growing areas in Brazil (Espirito Santo and Rio de Janeiro). Evaluation of commercial seed lots imported into Brazil for contamination with the pathogen would be necessary in order to avoid nation-wide spread of this serious disease.


Sign in / Sign up

Export Citation Format

Share Document